Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Feb;77(2):335–338. doi: 10.1104/pp.77.2.335

Effect of Temperature on H2 Evolution and Acetylene Reduction in Pea Nodules and in Isolated Bacteroids

Hans Bertelsen 1
PMCID: PMC1064515  PMID: 16664054

Abstract

Nitrogenase (EC 1.7.99.2) activity in pea (Pisum savitum) nodules formed after infection with Rhizobium leguminosarum (lacking uptake hydrogenase) was measured as acetylene reduction, H2 evolution in air and H2 evolution in Ar:O2. With detached roots the relative efficiency, calculated from acetylene reduction, showed a decrease (from 55 to below 0%) with increasing temperature. With excised nodules and isolated bacteroids similar results were obtained. However, the relative efficiency calculated from H2 evolution in Ar:O2 was unaffected by temperature. Measurements on both excised nodules and isolated bacteroids showed a marked difference between acetylene reduction and H2 evolution in Ar:O2 with increased temperature, indicating that either acetylene reduction or H2 evolution in Ar:O2 are inadequate measures of nitrogenase activity at higher temperature.

Full text

PDF
335

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
  2. Bethlenfalvay G. J., Phillips D. A. Effect of Light Intensity on Efficiency of Carbon Dioxide and Nitrogen Reduction in Pisum sativum L. Plant Physiol. 1977 Dec;60(6):868–871. doi: 10.1104/pp.60.6.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bethlenfalvay G. J., Phillips D. A. Ontogenetic Interactions between Photosynthesis and Symbiotic Nitrogen Fixation in Legumes. Plant Physiol. 1977 Sep;60(3):419–421. doi: 10.1104/pp.60.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis L. C., Shah V. K., Brill W. J. Nitrogenase. VII. Effect of component ratio, ATP and H2 on the distribution of electrons to alternative substrates. Biochim Biophys Acta. 1975 Sep 22;403(1):67–78. doi: 10.1016/0005-2744(75)90009-1. [DOI] [PubMed] [Google Scholar]
  5. Edie S. A., Phillips D. A. Effect of the host legume on acetylene reduction and hydrogen evolution by Rhizobium nitrogenase. Plant Physiol. 1983 May;72(1):156–160. doi: 10.1104/pp.72.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hageman R. V., Burris R. H. Electron allocation to alternative substrates of Azotobacter nitrogenase is controlled by the electron flux through dinitrogenase. Biochim Biophys Acta. 1980 Jun 10;591(1):63–75. doi: 10.1016/0005-2728(80)90220-0. [DOI] [PubMed] [Google Scholar]
  7. Mortenson L. E. Regulation of nitrogen fixation. Curr Top Cell Regul. 1978;13:179–232. doi: 10.1016/b978-0-12-152813-3.50010-0. [DOI] [PubMed] [Google Scholar]
  8. Rainbird R. M., Atkins C. A., Pate J. S. Effect of temperature on nitrogenase functioning in cowpea nodules. Plant Physiol. 1983 Oct;73(2):392–394. doi: 10.1104/pp.73.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rivera-Ortiz J. M., Burris R. H. Interactions among substrates and inhibitors of nitrogenase. J Bacteriol. 1975 Aug;123(2):537–545. doi: 10.1128/jb.123.2.537-545.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schubert K. R., Evans H. J. Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1207–1211. doi: 10.1073/pnas.73.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thorneley R. N., Eady R. R. Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate-reduction kinetics. Biochem J. 1977 Nov 1;167(2):457–461. doi: 10.1042/bj1670457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES