Abstract
A role of the guard cell chloroplasts in the CO2 response of stomata was investigated through a comparison of the leaf gas exchange characteristics of two closely related orchids: Paphiopedilum harrisianum, which lacks guard cell chloroplasts and Phragmipedium longifolium, which has chlorophyllous guard cells. Leaves of both species had an apparent quantum yield for assimilation of about 0.05, with photosynthesis saturating at 0.300 to 0.400 millimoles per square meter per second. CO2 curves were obtained by measuring steady-state assimilation and stomatal conductance under 0.180 or 0.053 millimoles per square meter per second white light, or darkness, at 0 to 400 microliters per liter ambient CO2. The response of assimilation to changes in CO2 was similar in the two species, but the response of conductance was consistently weaker in Paphiopedilum than in Phragmipedium. The data suggest involvement of guard cell chloroplasts in the stomatal response to CO2 and in the coupling of assimilation and conductance in the intact leaf.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Drake B., Raschke K. Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO(2). Plant Physiol. 1974 Jun;53(6):808–812. doi: 10.1104/pp.53.6.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melis A., Zeiger E. Chlorophyll a Fluorescence Transients in Mesophyll and Guard Cells : MODULATION OF GUARD CELL PHOTOPHOSPHORYLATION BY CO(2). Plant Physiol. 1982 Mar;69(3):642–647. doi: 10.1104/pp.69.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raschke K., Pierce M., Popiela C. C. Abscisic Acid Content and Stomatal Sensitivity to CO(2) in Leaves of Xanthium strumarium L. after Pretreatments in Warm and Cold Growth Chambers. Plant Physiol. 1976 Jan;57(1):115–121. doi: 10.1104/pp.57.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharkey T. D., Raschke K. Separation and measurement of direct and indirect effects of light on stomata. Plant Physiol. 1981 Jul;68(1):33–40. doi: 10.1104/pp.68.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong S. C., Cowan I. R., Farquhar G. D. Leaf Conductance in Relation to Assimilation in Eucalyptus pauciflora Sieb. ex Spreng: Influence of Irradiance and Partial Pressure of Carbon Dioxide. Plant Physiol. 1978 Oct;62(4):670–674. doi: 10.1104/pp.62.4.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeiger E., Grivet C., Assmann S. M., Deitzer G. F., Hannegan M. W. Stomatal Limitation to Carbon Gain in Paphiopedilum sp. (Orchidaceae) and Its Reversal by Blue Light. Plant Physiol. 1985 Feb;77(2):456–460. doi: 10.1104/pp.77.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]