Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Mar;77(3):540–543. doi: 10.1104/pp.77.3.540

Inhibition of Phytochrome Synthesis by Gabaculine

Gary Gardner 1, Holly L Gorton 1,1
PMCID: PMC1064560  PMID: 16664094

Abstract

Gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid), a transaminase inhibitor, also inhibits chlorophyll formation in plants, and the effect of this compound can be counteracted by 5-aminolevulinic acid (ALA) (Flint, personal communication, 1984). Since it is probable that ALA also serves as a precursor to phytochrome, the effects of gabaculine on phytochrome synthesis in developing etiolated seedlings were examined using in vivo spectrophotometry. Preemergence treatment with gabaculine was found to inhibit initial phytochrome synthesis in peas (Pisum sativum L.), corn (Zea mays L.), and oats (Avena sativa L.). In general, reduction in phytochrome correlated with reduction in chlorophyll. However, the extent of inhibition of phytochrome synthesis was not as great as that of chlorophyll synthesis, perhaps due to preexisting phytochrome in the seed. Foliar treatment of etiolated pea seedlings prior to light-induced destruction of phytochrome inhibited subsequent phytochrome resynthesis in the dark. These results suggest that both initial synthesis and resynthesis of phytochrome require de novo synthesis of chromophore as well as apoprotein.

Full text

PDF
540

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beale S. I., Gough S. P., Granick S. Biosynthesis of delta-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2719–2723. doi: 10.1073/pnas.72.7.2719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Colbert J. T., Hershey H. P., Quail P. H. Autoregulatory control of translatable phytochrome mRNA levels. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2248–2252. doi: 10.1073/pnas.80.8.2248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Klein O., Dörnemann D., Senger H. Two biosynthetic pathways to 5-aminolevulinic acid in algae. Int J Biochem. 1980;12(5-6):725–728. doi: 10.1016/0020-711x(80)90152-4. [DOI] [PubMed] [Google Scholar]
  5. Meller E., Gassman M. L. Studies with 4,6-dioxoheptanoic Acid on etiolated and greening barley leaves. Plant Physiol. 1981 Jun;67(6):1065–1068. doi: 10.1104/pp.67.6.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pratt L. H., Kidd G. H., Coleman R. A. An immunochemical characterization of the phytochrome destruction reaction. Biochim Biophys Acta. 1974 Sep 13;365(1):93–107. doi: 10.1016/0005-2795(74)90253-0. [DOI] [PubMed] [Google Scholar]
  7. Quail P. H., Schäfer E., Marmé D. De novo synthesis of phytochrome in pumpkin hooks. Plant Physiol. 1973 Aug;52(2):124–127. doi: 10.1104/pp.52.2.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Quail P. H., Schäfer E., Marmé D. Turnover of phytochrome in pumpkin cotyledons. Plant Physiol. 1973 Aug;52(2):128–131. doi: 10.1104/pp.52.2.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rando R. R. Mechanism of the irreversible inhibition of gamma-aminobutyric acid-alpha-ketoglutaric acid transaminase by the neutrotoxin gabaculine. Biochemistry. 1977 Oct 18;16(21):4604–4610. doi: 10.1021/bi00640a012. [DOI] [PubMed] [Google Scholar]
  10. Siegelman H. W., Turner B. C., Hendricks S. B. The chromophore of phytochrome. Plant Physiol. 1966 Oct;41(8):1289–1292. doi: 10.1104/pp.41.8.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES