Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Mar;77(3):571–577. doi: 10.1104/pp.77.3.571

Purification and Characterization of the Pea Chloroplast Pyruvate Dehydrogenase Complex 1

A Source of Acetyl-CoA and NADH for Fatty Acid Biosynthesis

Pamela J Camp 1,2, Douglas D Randall 1
PMCID: PMC1064566  PMID: 16664100

Abstract

The pyruvate dehydrogenase complex has been purified 76-fold, to a specific activity of 0.6 μmoles per minute per milligram protein, beginning with isolated pea (Pisum sativum L. var Little Marvel) chloroplasts. Purification was accomplished by rate zonal sedimentation, polyethyleneglycol precipitation, and ethyl-agarose affinity chromatography. Characterization of the substrates as pyruvate, NAD+, and coenzyme-A and the products as NADH, CO2, and acetyl-CoA, in a 1:1:1 stoichiometry unequivocally established that activity was the result of the pyruvate dehydrogenase complex. Immunochemical analysis demonstrated significant differences in structure and organization between the chloroplast pyruvate dehydrogenase complex and the more thoroughly characterized mitochondrial complex. Chloroplast complex has a higher magnesium requirement and a more alkaline pH optimum than mitochondrial complex, and these properties are consistent with light-mediated regulation in vivo. The chloroplast pyruvate dehydrogenase complex is not, however, regulated by ATP-dependent inactivation. The properties and subcellular localization of the chloroplast pyruvate dehydrogenase complex are consistent with its role of providing acetyl-CoA and NADH for fatty acid synthesis.

Full text

PDF
571

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal P. K., Canvin D. T. The pentose phosphate pathway in relation to fat synthesis in the developing castor oil seed. Plant Physiol. 1971 May;47(5):672–675. doi: 10.1104/pp.47.5.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Ingebretsen O. C., Farstad M. Direct measurement of free coenzyme A in biological extracts by reversed-phase high-performance liquid chromatography. J Chromatogr. 1980 Dec 26;202(3):439–445. doi: 10.1016/s0021-9673(00)91829-6. [DOI] [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Linn T. C., Pelley J. W., Pettit F. H., Hucho F., Randall D. D., Reed L. J. -Keto acid dehydrogenase complexes. XV. Purification and properties of the component enzymes of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch Biochem Biophys. 1972 Feb;148(2):327–342. doi: 10.1016/0003-9861(72)90151-8. [DOI] [PubMed] [Google Scholar]
  6. Linn T. C., Pettit F. H., Reed L. J. Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci U S A. 1969 Jan;62(1):234–241. doi: 10.1073/pnas.62.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miernyk J. A., Trelease R. N. Role of malate synthase in citric Acid synthesis by maturing cotton embryos: a proposal. Plant Physiol. 1981 May;67(5):875–881. doi: 10.1104/pp.67.5.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Murphy D. J., Stumpf P. K. The origin of chloroplastic acetyl coenzyme A. Arch Biochem Biophys. 1981 Dec;212(2):730–739. doi: 10.1016/0003-9861(81)90417-3. [DOI] [PubMed] [Google Scholar]
  9. Ohlrogge J. B., Kuhn D. N., Stumpf P. K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1194–1198. doi: 10.1073/pnas.76.3.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Porpáczy Z., Sümegi B., Alkonyi I. Association between the alpha-ketoglutarate dehydrogenase complex and succinate thiokinase. Biochim Biophys Acta. 1983 Dec 12;749(2):172–179. doi: 10.1016/0167-4838(83)90249-2. [DOI] [PubMed] [Google Scholar]
  11. Randall D. D., Rubin P. M., Fenko M. Plant pyruvate dehydrogenase complex purification, characterization and regulation by metabolites and phosphorylation. Biochim Biophys Acta. 1977 Dec 8;485(2):336–349. doi: 10.1016/0005-2744(77)90169-3. [DOI] [PubMed] [Google Scholar]
  12. Randall D. D., Williams M., Rapp B. J. Phosphorylation-dephosphorylation of pyruvate dehydrogenase complex from pea leaf mitochondria. Arch Biochem Biophys. 1981 Apr 1;207(2):437–444. doi: 10.1016/0003-9861(81)90051-5. [DOI] [PubMed] [Google Scholar]
  13. Reid E. E., Thompson P., Lyttle C. R., Dennis D. T. Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids. Plant Physiol. 1977 May;59(5):842–848. doi: 10.1104/pp.59.5.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rubin P. M., Randall D. D. Purification and characterization of pyruvate dehydrogenase complex from borccoli floral buds. Arch Biochem Biophys. 1977 Jan 30;178(2):342–349. doi: 10.1016/0003-9861(77)90202-8. [DOI] [PubMed] [Google Scholar]
  15. Rubin P. M., Zahler W. L., Randall D. D. Plant pyruvate dehydrogenase complex: analysis of the kinetic properties and metabolite regulation. Arch Biochem Biophys. 1978 May;188(1):70–77. doi: 10.1016/0003-9861(78)90357-0. [DOI] [PubMed] [Google Scholar]
  16. Schwartz E. R., Reed L. J. Regulation of the activity of the pyruvate dehydrogenase complex of Escherichia coli. Biochemistry. 1970 Mar 17;9(6):1434–1439. doi: 10.1021/bi00808a019. [DOI] [PubMed] [Google Scholar]
  17. Shimakata T., Stumpf P. K. Purification and characterizations of beta-Ketoacyl-[acyl-carrier-protein] reductase, beta-hydroxyacyl-[acyl-carrier-protein] dehydrase, and enoyl-[acyl-carrier-protein] reductase from Spinacia oleracea leaves. Arch Biochem Biophys. 1982 Oct 1;218(1):77–91. doi: 10.1016/0003-9861(82)90323-x. [DOI] [PubMed] [Google Scholar]
  18. Stitt M., Lilley R. M., Heldt H. W. Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts. Plant Physiol. 1982 Oct;70(4):971–977. doi: 10.1104/pp.70.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Visser J., Kester H., Jeyaseelan K., Topp R. Pyruvate dehydrogenase complex from Bacillus. Methods Enzymol. 1982;89(Pt 500):399–407. doi: 10.1016/s0076-6879(82)89070-8. [DOI] [PubMed] [Google Scholar]
  20. Visser J., Strating M. Pyruvate dehydrogenase complex from Escherichia coli. Methods Enzymol. 1982;89(Pt 500):391–399. doi: 10.1016/s0076-6879(82)89069-1. [DOI] [PubMed] [Google Scholar]
  21. Williams M., Randall D. D. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L. Plant Physiol. 1979 Dec;64(6):1099–1103. doi: 10.1104/pp.64.6.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES