Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Mar;77(3):648–652. doi: 10.1104/pp.77.3.648

A Low Molecular Weight Polypeptide Which Accumulates upon Inhibition of Porphyrin Biosynthesis in Maize

Ayelet Schuster 1, Eitan Harel 1
PMCID: PMC1064580  PMID: 16664114

Abstract

Levulinic acid, an inhibitor of porphyrin biosynthesis, causes marked accumulation of a low molecular weight polypeptide in greening maize (Zea mays L.) leaves. Additional compounds which interfere with porphyrin synthesis (e.g. aminooxyacetate, iron-chelators, 4,6-dioxoheptanoic acid) had a similar effect. The polypeptide accumulated in the cytosol and could not be detected in the plastid stroma. Its molecular weight was estimated as 4800 daltons by electrophoresis in sodium dodecyl sulfate-acrylamide gels containing urea and glycerol. The accumulation of the polypeptide did not result from inhibition of chlorophyll or protoheme syntheses. Compounds which caused its accumulation markedly reduced the activity of nitrite reductase. It is suggested that the accumulation is caused by inhibition of siroheme synthesis which interferes with the formation of nitrite or sulfite reductase.

Full text

PDF
648

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beale S. I., Chen N. C. N-Methyl Mesoporphyrin IX Inhibits Phycocyanin, but Not Chlorophyll Synthesis in Cyanidium caldarium. Plant Physiol. 1983 Feb;71(2):263–268. doi: 10.1104/pp.71.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beale S. I., Foley T. Induction of delta-Aminolevulinic Acid Synthase Activity and Inhibition of Heme Synthesis in Euglena gracilis by N-Methyl Mesoporphyrin IX. Plant Physiol. 1982 Jun;69(6):1331–1333. doi: 10.1104/pp.69.6.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beale S. I. The biosynthesis of delta-aminolevulinic acid in Chlorella. Plant Physiol. 1970 Apr;45(4):504–506. doi: 10.1104/pp.45.4.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. Eur J Biochem. 1981 Aug;118(1):61–70. doi: 10.1111/j.1432-1033.1981.tb05486.x. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. De Matteis F., Gibbs A. H., Smith A. G. Inhibition of protohaem ferro-lyase by N-substituted porphyrins. Structural requirements for the inhibitory effect. Biochem J. 1980 Sep 1;189(3):645–648. doi: 10.1042/bj1890645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Granick S., Beale S. I. Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. Adv Enzymol Relat Areas Mol Biol. 1978;46:33–203. doi: 10.1002/9780470122914.ch2. [DOI] [PubMed] [Google Scholar]
  9. Harel E., Klein S. Light dependent formation of -aminolevulinic acid in etiolated leaves of higher plants. Biochem Biophys Res Commun. 1972 Oct 17;49(2):364–370. doi: 10.1016/0006-291x(72)90419-6. [DOI] [PubMed] [Google Scholar]
  10. Harel E., Ne'eman E. Alternative Routes for the Synthesis of 5-Aminolevulinic Acid in Maize Leaves : II. Formation from Glutamate. Plant Physiol. 1983 Aug;72(4):1062–1067. doi: 10.1104/pp.72.4.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harel E., Ne'eman E., Meller E. Alternative Routes for the Synthesis of 5-Aminolevulinic Acid in Maize Leaves : I. Formation from 2-Ketoglutarate via 4,5-Dioxovaleric Acid. Plant Physiol. 1983 Aug;72(4):1056–1061. doi: 10.1104/pp.72.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kadenbach B., Jarausch J., Hartmann R., Merle P. Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure. Anal Biochem. 1983 Mar;129(2):517–521. doi: 10.1016/0003-2697(83)90586-9. [DOI] [PubMed] [Google Scholar]
  13. Meller E., Gassman M. L. The effects of levulinic Acid and 4,6-dioxoheptanoic Acid on the metabolism of etiolated and greening barley leaves. Plant Physiol. 1981 Apr;67(4):728–732. doi: 10.1104/pp.67.4.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Merle P., Kadenbach B. The subunit composition of mammalian cytochrome c oxidase. Eur J Biochem. 1980 Apr;105(3):499–507. doi: 10.1111/j.1432-1033.1980.tb04525.x. [DOI] [PubMed] [Google Scholar]
  15. Norris R. D., Lea P. J. The use of amino acid analogues in biological studies. Sci Prog. 1976 Spring;63(249):65–85. [PubMed] [Google Scholar]
  16. Razin A., Goren D., Friedman J. Studies on the biological role of DNA methylation: inhibition of methylation and maturation of the bacteriophage phichi174 by nicotinamide. Nucleic Acids Res. 1975 Oct;2(10):1967–1974. doi: 10.1093/nar/2.10.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stillman L. C., Gassman M. L. Protoheme extraction from plant tissue. Anal Biochem. 1978 Nov;91(1):166–172. doi: 10.1016/0003-2697(78)90827-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES