Abstract
Glycosyl transferases that participate in the assembly of the lipid-linked oligosaccharide intermediates were solubilized from cultured soybean cells using 0.3% Nonidet P-40 (NP-40) in the presence of 10% glycerol. The solubilized enzyme preparation was reasonably stable and 50% of the activity still remained after storage at −10°C for 1 month. The solubilized enzyme synthesized [14C]Man3GlcNAc2-pyrophosphoryl-polyprenol and [14C]Man5GlcNAc2-pyrophosphoryl-polyprenol when incubated with GDP-[14C]mannose plus a partially purified acceptor lipid isolated from calf liver. The formation of these lipid-linked oligosaccharides did not require the addition of dolichyl-phosphate or metal ions. In fact, the addition of 5 to 10 millimolar ethylenediaminetetraacetate stimulated the incorporation of mannose into lipid-linked oligosaccharides 2- to 3-fold. Since little or no dolichyl-phosphoryl-mannose is formed in the presence of ethylenediaminetetraacetate, the results suggest that the mannosyl residues added to form Man3GlcNAc2-lipid and Man5GlcNAc2-lipid come directly from GDP-mannose without the participation of dolichyl-phosphoryl-mannose. On the other hand, the formation of significant amounts of Man6GlcNAc2-lipid, Man7GlcNAc2-lipid, and Man8GlcNAc2-lipid occurred when the above incubations were supplemented with dolichyl-phosphate and metal ions. Based on various time course studies and supplementation studies with various additions, it appears likely that the first five mannose residues to form Man5GlcNAc2-lipid come directly from GDP-mannose, whereas other mannose units to form larger oligosaccharide-lipids come from dolichyl-phosphoryl-mannose.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arakawa H., Mookerjea S. Characterization and partial purification of two enzymes transferring N-acetylglucosamine to dolichyl monophosphate and ribonuclease A. Eur J Biochem. 1984 Apr 16;140(2):297–302. doi: 10.1111/j.1432-1033.1984.tb08101.x. [DOI] [PubMed] [Google Scholar]
- Bailey D. S., Dürr M., Burke J., Maclachlan G. The assembly of lipid-linked oligosaccharides in plant and animal membranes. J Supramol Struct. 1979;11(2):123–138. doi: 10.1002/jss.400110203. [DOI] [PubMed] [Google Scholar]
- Chambers J., Forsee W. T., Elbein A. D. Enzymatic transfer of mannose from mannosyl-phosphoryl-polyprenol to lipid-linked oligosaccharides by pig aorta. J Biol Chem. 1977 Apr 25;252(8):2498–2506. [PubMed] [Google Scholar]
- Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J Biol Chem. 1980 May 25;255(10):4441–4446. [PubMed] [Google Scholar]
- Ericson M. C., Gafford J. T., Elbein A. D. Tunicamycin inhibits GlcNAc-lipid formation in plants. J Biol Chem. 1977 Nov 10;252(21):7431–7433. [PubMed] [Google Scholar]
- Forsee W. T., Elbein A. D. Biosynthesis of lipid-linked oligosaccharides and glycoprotein in aorta: stimulation by acceptor lipids isolated from liver. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2574–2578. doi: 10.1073/pnas.73.8.2574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forsee W. T., Elbein A. D. Biosynthesis of lipid-linked oligosaccharides in cotton fibers. Stimulation by lipids from pig liver. J Biol Chem. 1977 Apr 10;252(7):2444–2446. [PubMed] [Google Scholar]
- Forsee W. T., Elbein A. D. Glycoprotein biosynthesis in plants. Demonstration of lipid-linked oligosaccharides of mannose and N-acetylglucosamine. J Biol Chem. 1975 Dec 25;250(24):9283–9293. [PubMed] [Google Scholar]
- Heifetz A., Elbein A. D. Solubilization and properties of mannose and N-acetylglucosamine transferases involved in formation of polyprenyl-sugar intermediates. J Biol Chem. 1977 May 10;252(9):3057–3063. [PubMed] [Google Scholar]
- Hori H., Elbein A. D. Characterization of the oligosaccharides from lipid-linked oligosaccharides of mung bean seedlings. Plant Physiol. 1982 Jul;70(1):12–20. doi: 10.1104/pp.70.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori H., Elbein A. D. Processing of N-linked oligosaccharides in soybean cultured cells. Arch Biochem Biophys. 1983 Feb 1;220(2):415–425. doi: 10.1016/0003-9861(83)90431-9. [DOI] [PubMed] [Google Scholar]
- Hori H., James D. W., Jr, Elbein A. D. Isolation and characterization of the Glc3Man9GlcNAc2 from lipid-linked oligosaccharides of plants. Arch Biochem Biophys. 1982 Apr 15;215(1):12–21. doi: 10.1016/0003-9861(82)90273-9. [DOI] [PubMed] [Google Scholar]
- Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
- Jensen J. W., Schutzbach J. S. The biosynthesis of oligosaccharide-lipids. Partial purification and characterization of mannosyltransferase II. J Biol Chem. 1981 Dec 25;256(24):12899–12904. [PubMed] [Google Scholar]
- Jensen J. W., Springfield J. D., Schutzbach J. S. The biosynthesis of oligosaccharide-lipids. Isolation of an oligosaccharide-P-P-lipid acceptor. J Biol Chem. 1980 Dec 10;255(23):11268–11272. [PubMed] [Google Scholar]
- Kang M. S., Spencer J. P., Elbein A. D. Amphomycin inhibition of mannose and GlcNAc incorporation into lipid-linked saccharides. J Biol Chem. 1978 Dec 25;253(24):8860–8866. [PubMed] [Google Scholar]
- Kang M. S., Spencer J. P., Elbein A. D. Amphomycin inhibits the incorporation of mannose and GlcNAc into lipid-linked saccharides by aorta extracts. Biochem Biophys Res Commun. 1978 May 30;82(2):568–574. doi: 10.1016/0006-291x(78)90912-9. [DOI] [PubMed] [Google Scholar]
- Lehle L., Tanner W. Polyprenol-linked sugars and glycoprotein synthesis in plants. Biochem Soc Trans. 1983 Oct;11(5):568–574. doi: 10.1042/bst0110568. [DOI] [PubMed] [Google Scholar]
- Lehle L., Tanner W. The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett. 1976 Nov 15;72(1):167–170. doi: 10.1016/0014-5793(76)80922-2. [DOI] [PubMed] [Google Scholar]
- Schutzbach J. S., Springfield J. D., Jensen J. W. The biosynthesis of oligosaccharide-lipids. Formation of an alpha-1,2-mannosyl-mannose linkage. J Biol Chem. 1980 May 10;255(9):4170–4175. [PubMed] [Google Scholar]
- Spencer J. P., Elbein A. D. Transfer of mannose from GDP-mannose to lipid-linked oligosaccharide by soluble mannosyl transferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2524–2527. doi: 10.1073/pnas.77.5.2524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staneloni R. J., Leloir L. F. The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins. CRC Crit Rev Biochem. 1982 Apr;12(4):289–326. doi: 10.1080/10409238209104422. [DOI] [PubMed] [Google Scholar]
- Staneloni R. J., Tolmasky M. E., Petriella C., Ugalde R. A., Leloir L. F. Presence in a plant of a compound similar to the dolichyl diphosphate oligosaccharide of animal tissue. Biochem J. 1980 Oct 1;191(1):257–260. doi: 10.1042/bj1910257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tkacz J. S., Lampen O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun. 1975 Jul 8;65(1):248–257. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
- WELKER N. E., CAMPBELL L. L. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Oct;86:681–686. doi: 10.1128/jb.86.4.681-686.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waechter C. J., Lennarz W. J. The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem. 1976;45:95–112. doi: 10.1146/annurev.bi.45.070176.000523. [DOI] [PubMed] [Google Scholar]
