Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Apr;77(4):851–856. doi: 10.1104/pp.77.4.851

Photorespiration-Induced Reduction of Ribulose Bisphosphate Carboxylase Activation Level 1

Chris J Chastain 1,2, William L Ogren 1,2
PMCID: PMC1064618  PMID: 16664149

Abstract

Leaf photosynthesis and ribulose bisphosphate carboxylase activation level were inhibited in several mutants of the C3 crucifer Arabidopsis thaliana which possess lesions in the photorespiratory pathway. This inhibition occurred when leaves were illuminated under a photorespiratory atmosphere (50% O2, 350 microliters per liter CO2, balance N2), but not in nonphotorespiratory conditions (2% O2, 350 microliters per liter CO2, balance N2). Inhibition of carboxylase activation level was observed in strains with deficient glycine decarboxylase, serine transhydroxymethylase, serine-glyoxylate aminotransferase, glutamate synthase, and chloroplast dicarboxylate transport activities, but inhibition did not occur in a glycolate-P phosphatase-deficient strain. Also, the photorespiration inhibitor aminoacetonitrile produced a decline in leaf and protoplast ribulose bisphosphate carboxylase activation level, but was without effect on intact chloroplasts. Fructose bisphosphatase, a light-activated enzyme which is strongly dependent on stromal pH and Mg2+ for regulation, was unaffected by conditions which caused inhibition of ribulose bisphosphate carboxylase. Thus, the mechanism of inhibition does not appear to involve changes in stromal Mg2+ and pH but rather is associated with metabolite flux through the photorespiratory pathway.

Full text

PDF
851

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Créach E., Stewart C. R. Effects of aminoacetonitrile on net photosynthesis, ribulose-1,5-bisphosphate levels, and glycolate pathway intermediates. Plant Physiol. 1982 Nov;70(5):1444–1448. doi: 10.1104/pp.70.5.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heber U., Santarius K. A. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch B. 1970 Jul;25(7):718–728. doi: 10.1515/znb-1970-0714. [DOI] [PubMed] [Google Scholar]
  4. Heldt H. W., Sauer F. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta. 1971 Apr 6;234(1):83–91. doi: 10.1016/0005-2728(71)90133-2. [DOI] [PubMed] [Google Scholar]
  5. Lawyer A. L., Cornwell K. L., Gee S. L., Bassham J. A. Glyoxylate and glutamate effects on photosynthetic carbon metabolism in isolated chloroplasts and mesophyll cells of spinach. Plant Physiol. 1983 Jun;72(2):420–425. doi: 10.1104/pp.72.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lilley R. M., Walker D. A. The reduction of 3-phosphoglycerate by reconstituted chloroplasts and by chloroplast extracts. Biochim Biophys Acta. 1974 Dec 19;368(3):269–278. doi: 10.1016/0005-2728(74)90174-1. [DOI] [PubMed] [Google Scholar]
  7. Lorimer G. H., Badger M. R., Heldt H. W. The activation of ribulose 1,5-bisphosphate carboxylase/oxygenase. Basic Life Sci. 1978;11:283–306. doi: 10.1007/978-1-4684-8106-8_18. [DOI] [PubMed] [Google Scholar]
  8. McCurry S. D., Pierce J., Tolbert N. E., Orme-Johnson W. H. On the mechanism of effector-mediated activation of ribulose bisphosphate carboxylase/oxygenase. J Biol Chem. 1981 Jul 10;256(13):6623–6628. [PubMed] [Google Scholar]
  9. Mulligan R. M., Wilson B., Tolbert N. E. Effects of glyoxylate on photosynthesis by intact chloroplasts. Plant Physiol. 1983 Jun;72(2):415–419. doi: 10.1104/pp.72.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Perchorowicz J. T., Jensen R. G. Photosynthesis and Activation of Ribulose Bisphosphate Carboxylase in Wheat Seedlings : Regulation by CO(2) and O(2). Plant Physiol. 1983 Apr;71(4):955–960. doi: 10.1104/pp.71.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perchorowicz J. T., Raynes D. A., Jensen R. G. Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. Proc Natl Acad Sci U S A. 1981 May;78(5):2985–2989. doi: 10.1073/pnas.78.5.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sicher R. C., Hatch A. L., Stumpf D. K., Jensen R. G. Ribulose 1,5-bisphosphate and activation of the carboxylase in the chloroplast. Plant Physiol. 1981 Jul;68(1):252–255. doi: 10.1104/pp.68.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Somerville C. R., Ogren W. L. Mutants of the cruciferous plant Arabidopsis thaliana lacking glycine decarboxylase activity. Biochem J. 1982 Feb 15;202(2):373–380. doi: 10.1042/bj2020373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Somerville C. R., Ogren W. L. Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Proc Natl Acad Sci U S A. 1980 May;77(5):2684–2687. doi: 10.1073/pnas.77.5.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Somerville C. R., Ogren W. L. Photorespiration-deficient Mutants of Arabidopsis thaliana Lacking Mitochondrial Serine Transhydroxymethylase Activity. Plant Physiol. 1981 Apr;67(4):666–671. doi: 10.1104/pp.67.4.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Somerville C. R., Portis A. R., Ogren W. L. A Mutant of Arabidopsis thaliana Which Lacks Activation of RuBP Carboxylase In Vivo. Plant Physiol. 1982 Aug;70(2):381–387. doi: 10.1104/pp.70.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Somerville S. C., Ogren W. L. An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1290–1294. doi: 10.1073/pnas.80.5.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES