Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Apr;77(4):877–880. doi: 10.1104/pp.77.4.877

Effects of Low Temperature and Respiratory Inhibitors on Calcium Flux in Plant Mitochondria

Ian B Ferguson 1,2,1, Michael S Reid 1,2, Roger J Romani 1,2
PMCID: PMC1064623  PMID: 16664154

Abstract

The effects of low temperature on uptake and release of 45Ca2+ were studied with sound, well-coupled mitochondria extracted at room temperature from avocado (Persea americana Mill, cv Fuerte) fruits. Low Ca2+ concentrations (10 micromolar) were employed to simulate physiological conditions. At 25°C, the rate of Ca2+ uptake decreased with time, whereas at 5°C the initial rate, though lower, remained linear. As a consequence total uptake at 5°C was substantially greater than at 25°C for periods greater than 5 min. Preincubation of mitochondria at 5°C enhanced subsequent Ca2+ uptake at 25°C. Ca2+ uptake was inhibited by carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) and by ruthenium red, but neither KCN nor salicylhydroxamic acid separately or together had any major inhibitory effect. Preloaded mitochondria held for 60 min in a Ca-free medium lost little Ca2+ at 25°C and none at 5°C, except in the presence of ruthenium red or CCCP.

Full text

PDF
877

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Charbonneau H., Jones H. P., McCann R. O., Cormier M. J. Characterization of the plant nicotinamide adenine dinucleotide kinase activator protein and its identification as calmodulin. Biochemistry. 1980 Jun 24;19(13):3113–3120. doi: 10.1021/bi00554a043. [DOI] [PubMed] [Google Scholar]
  2. Baumhüter S., Richter C. The hydroperoxide-induced release of mitochondrial calcium occurs via a distinct pathway and leaves mitochondria intact. FEBS Lett. 1982 Nov 8;148(2):271–275. doi: 10.1016/0014-5793(82)80823-5. [DOI] [PubMed] [Google Scholar]
  3. Carafoli E., Crompton M. The regulation of intracellular calcium by mitochondria. Ann N Y Acad Sci. 1978 Apr 28;307:269–284. doi: 10.1111/j.1749-6632.1978.tb41957.x. [DOI] [PubMed] [Google Scholar]
  4. Chen C. H., Lehninger A. L. Ca 2+ transport activity in mitochondria from some plant tissues. Arch Biochem Biophys. 1973 Jul;157(1):183–196. doi: 10.1016/0003-9861(73)90404-9. [DOI] [PubMed] [Google Scholar]
  5. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  6. Day D. A., Bertagnolli B. L., Hanson J. B. The effect of calcium on the respiratory responses of corn mitochondria. Biochim Biophys Acta. 1978 May 10;502(2):289–297. doi: 10.1016/0005-2728(78)90050-6. [DOI] [PubMed] [Google Scholar]
  7. Dieter P., Marmé D. Calmodulin activation of plant microsomal Ca uptake. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7311–7314. doi: 10.1073/pnas.77.12.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanson J. B., Bertagnolli B. L., Shepherd W. D. Phosphate-induced Stimulation of Acceptorless Respiration in Corn Mitochondria. Plant Physiol. 1972 Sep;50(3):347–354. doi: 10.1104/pp.50.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  10. Lehninger A. L., Reynafarje B., Vercesi A., Tew W. P. Transport and accumulation of calcium in mitochondria. Ann N Y Acad Sci. 1978 Apr 28;307:160–176. doi: 10.1111/j.1749-6632.1978.tb41941.x. [DOI] [PubMed] [Google Scholar]
  11. Lyons J. M., Raison J. K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol. 1970 Apr;45(4):386–389. doi: 10.1104/pp.45.4.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ozelkök S. I., Romani R. J. Ripening and in vitro retention of respiratory control by avocado and pear mitochondria. Plant Physiol. 1975 Aug;56(2):239–244. doi: 10.1104/pp.56.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Romani R. J., Tuskes S. E., Ozelkök S. Survival of plant mitochondria in vitro. Form and function after 4 days at 25 degrees C. Arch Biochem Biophys. 1974 Oct;164(2):743–751. doi: 10.1016/0003-9861(74)90088-5. [DOI] [PubMed] [Google Scholar]
  14. Roux S. J., McEntire K., Slocum R. D., Cedel T. E., Hale C. C. Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats. Proc Natl Acad Sci U S A. 1981 Jan;78(1):283–287. doi: 10.1073/pnas.78.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Williamson R. E., Ashley C. C. Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature. 1982 Apr 15;296(5858):647–650. doi: 10.1038/296647a0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES