Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Apr;77(4):930–934. doi: 10.1104/pp.77.4.930

Controls on 22Na+ Influx in Corn Roots 1

Benjamin Jacoby 1,2, John B Hanson 1
PMCID: PMC1064634  PMID: 16664165

Abstract

We have investigated the effects of hyperpolarization and depolarization, and the presence of K+ and/or Ca2+, on 22Na+ influx into corn (Zea mays L.) root segments. In freshly excised root tissue which is injured, Na+ influx is unaffected by hyperpolarization with fusicoccin, or depolarization with uncoupler (protonophore), or by addition of K+. However, added Ca2+ suppresses Na+ influx by 60%. In washed tissue which has recovered, Na+ influx is doubled over that of freshly excised tissue, and the influx is increased by fusicoccin and suppressed by uncoupler. This energy-linked component of Na+ influx is completely eliminated by low concentrations of K+, leaving the same level and kind of Na+ influx seen in freshly excised roots. The K+-sensitive energy linkage appears to be by the carrier for active K+ influx. Calcium is equally inhibitory to Na+ influx in washed as in fresh tissue. Other divalent cations are only slightly less effective. Net Na+ uptake was about 25% of 22Na+ influx, but proportionately the response to K+ and Ca2+ was about the same.

The constancy of K+-insensitive Na+ influx under conditions known to hyperpolarize and depolarize suggests that if Na+ transport is by means of a voltage-sensitive channel, the rise or fall of channel resistance must be proportional to the rise or fall in potential difference. The alternative is a passive electroneutral exchange of 22Na+ for endogenous Na+. The data suggest that an inwardly directed Na+ current is largely offset by an efflux current, giving both a small net uptake and isotopic exchange.

Full text

PDF
930

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M. Sodium channels and gating currents. Physiol Rev. 1981 Jul;61(3):644–683. doi: 10.1152/physrev.1981.61.3.644. [DOI] [PubMed] [Google Scholar]
  2. Collander R. SELECTIVE ABSORPTION OF CATIONS BY HIGHER PLANTS. Plant Physiol. 1941 Oct;16(4):691–720. doi: 10.1104/pp.16.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Epstein E. The essential role of calcium in selective cation transport by plant cells. Plant Physiol. 1961 Jul;36(4):437–444. doi: 10.1104/pp.36.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gronewald J. W., Cheeseman J. M., Hanson J. B. Comparison of the responses of corn root tissue to fusicoccin and washing. Plant Physiol. 1979 Feb;63(2):255–259. doi: 10.1104/pp.63.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gronewald J. W., Hanson J. B. Adenine nucleotide content of corn roots as affected by injury and subsequent washing. Plant Physiol. 1982 Jun;69(6):1252–1256. doi: 10.1104/pp.69.6.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jacobson L., Hannapel R. J., Moore D. P., Schaedle M. Influence of calcium on selectivity of ion absorption process. Plant Physiol. 1961 Jan;36(1):58–61. doi: 10.1104/pp.36.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johanson J. G., Cheeseman J. M. Uptake and distribution of sodium and potassium by corn seedlings : I. Role of the mesocotyl in ;sodium exclusion'. Plant Physiol. 1983 Sep;73(1):153–158. doi: 10.1104/pp.73.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lin W., Hanson J. B. Increase in electrogenic membrane potential with washing of corn root tissue. Plant Physiol. 1974 Nov;54(5):799–801. doi: 10.1104/pp.54.5.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mengel K., Pflüger R. The Release of Potassium and Sodium from Young Excised Roots of Zea mays under Various Efflux Conditions. Plant Physiol. 1972 Jan;49(1):16–19. doi: 10.1104/pp.49.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moran N., Ehrenstein G., Iwasa K., Bare C., Mischke C. Ion channels in plasmalemma of wheat protoplasts. Science. 1984 Nov 16;226(4676):835–838. doi: 10.1126/science.6093255. [DOI] [PubMed] [Google Scholar]
  11. Poovaiah B. W., Leopold A. C. Deferral of leaf senescence with calcium. Plant Physiol. 1973 Sep;52(3):236–239. doi: 10.1104/pp.52.3.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rains D. W., Epstein E. Sodium absorption by barley roots: role of the dual mechanisms of alkali cation transport. Plant Physiol. 1967 Mar;42(3):314–318. doi: 10.1104/pp.42.3.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zocchi G., Hanson J. B. Calcium influx into corn roots as a result of cold shock. Plant Physiol. 1982 Jul;70(1):318–319. doi: 10.1104/pp.70.1.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. de Quintero M. R., Hanson J. B. Reactions of corn root tissue to calcium. Plant Physiol. 1984 Oct;76(2):403–408. doi: 10.1104/pp.76.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES