Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Apr;77(4):1004–1009. doi: 10.1104/pp.77.4.1004

Intercellular Nodule Localization and Nodule Specificity of Xanthine Dehydrogenase in Soybean 1

Eric W Triplett 1
PMCID: PMC1064648  PMID: 16664136

Abstract

The distribution of xanthine dehydrogenase throughout the soybean plant as well as the intercellular localization of xanthine dehydrogenase within soybean nodules was determined. Polyclonal antibodies against purified xanthine dehydrogenase were prepared and used in an enzymelinked immunosorbent assay to determine whether xanthine dehydrogenase is a nodule-specific protein. This immunological assay showed that xanthine dehydrogenase is present in far greater concentration in the nodule than in any other plant organ. Immunodiffusion tests showed that anti-soybean nodule xanthine dehydrogenase would cross-react with nodule crude extracts from the ureide producers, soybean, cowpea, and lima bean, but would not cross-react with those of the amide producers, alfalfa and lupine. A crude extract from pea nodules cross-reacted slightly with anti-soybean xanthine dehydrogenase. Anti-soybean xanthine dehydrogenase did not cross-react with buttermilk xanthine oxidase either by enzyme-linked immunosorbent assay or by immunodiffusion test.

Fresh nodule sections from the ureide-producers, soybean, cowpea, and lima bean, all stained positively for xanthine dehydrogenase. The substrate-dependent stain was inhibited by allopurinol and was observed only in the infected nodule cells of these species. Nodules from the amideproducers, alfalfa and white lupine, did not stain for xanthine dehydrogenase.

Full text

PDF
1004

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auger S., Verma D. P. Induction and expression of nodule-specific host genes in effective and ineffective root nodules of soybean. Biochemistry. 1981 Mar 3;20(5):1300–1306. doi: 10.1021/bi00508a040. [DOI] [PubMed] [Google Scholar]
  2. Bergmann H., Preddie E., Verma D. P. Nodulin-35: a subunit of specific uricase (uricase II) induced and localized in the uninfected cells of soybean nodules. EMBO J. 1983;2(12):2333–2339. doi: 10.1002/j.1460-2075.1983.tb01743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cleere W. F., Coughlan M. P. Avian xanthine dehydrogenases. I. Isolation and characterization of the turkey liver enzyme. Comp Biochem Physiol B. 1975 Feb 15;50(2B):311–322. doi: 10.1016/0305-0491(75)90280-1. [DOI] [PubMed] [Google Scholar]
  5. Hanks J. F., Schubert K., Tolbert N. E. Isolation and characterization of infected and uninfected cells from soybean nodules : role of uninfected cells in ureide synthesis. Plant Physiol. 1983 Apr;71(4):869–873. doi: 10.1104/pp.71.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanks J. F., Tolbert N. E., Schubert K. R. Localization of enzymes of ureide biosynthesis in peroxisomes and microsomes of nodules. Plant Physiol. 1981 Jul;68(1):65–69. doi: 10.1104/pp.68.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hurrell J. G., Thulborn K. R., Broughton W. J., Dilworth M. J., Leach S. J. Leghemoglobins: immunochemistry and phylogenetic relationships. FEBS Lett. 1977 Dec 15;84(2):244–246. doi: 10.1016/0014-5793(77)80698-4. [DOI] [PubMed] [Google Scholar]
  8. Lucas K., Boland M. J., Schubert K. R. Uricase from soybean root nodules: purification, properties, and comparison with the enzyme from cowpea. Arch Biochem Biophys. 1983 Oct 1;226(1):190–197. doi: 10.1016/0003-9861(83)90284-9. [DOI] [PubMed] [Google Scholar]
  9. Newcomb E. H., Tandon S. R. Uninfected cells of soybean root nodules: ultrastructure suggests key role in ureide production. Science. 1981 Jun 19;212(4501):1394–1396. doi: 10.1126/science.212.4501.1394. [DOI] [PubMed] [Google Scholar]
  10. Rainbird R. M., Atkins C. A. Purification and some properties of urate oxidase from nitrogen-fixing nodules of cowpea. Biochim Biophys Acta. 1981 May 14;659(1):132–140. doi: 10.1016/0005-2744(81)90277-1. [DOI] [PubMed] [Google Scholar]
  11. Rieder H., Teutsch H. F., Sasse D. NADP-dependent dehydrogenases in rat liver parenchyma. I. Methodological studies on the qualitative histochemistry of G6PDH, 6PGDH, malic enzyme and ICDH. Histochemistry. 1978 Jul 12;56(3-4):283–298. doi: 10.1007/BF00495990. [DOI] [PubMed] [Google Scholar]
  12. Shelp B. J., Atkins C. A., Storer P. J., Canvin D. T. Cellular and subcellular organization of pathways of ammonia assimilation and ureide synthesis in nodules of cowpea (Vigna unguiculata L. Walp.). Arch Biochem Biophys. 1983 Jul 15;224(2):429–441. doi: 10.1016/0003-9861(83)90229-1. [DOI] [PubMed] [Google Scholar]
  13. Smith J. D. The concentration and distribution of haemoglobin in the root nodules of leguminous plants. Biochem J. 1949;44(5):585–591. doi: 10.1042/bj0440585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Streeter J. G. Allantoin and Allantoic Acid in Tissues and Stem Exudate from Field-grown Soybean Plants. Plant Physiol. 1979 Mar;63(3):478–480. doi: 10.1104/pp.63.3.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Triplett E. W., Blevins D. G., Randall D. D. Allantoic Acid Synthesis in Soybean Root Nodule Cytosol via Xanthine Dehydrogenase. Plant Physiol. 1980 Jun;65(6):1203–1206. doi: 10.1104/pp.65.6.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Triplett E. W., Blevins D. G., Randall D. D. Purification and properties of soybean nodule xanthine dehydrogenase. Arch Biochem Biophys. 1982 Nov;219(1):39–46. doi: 10.1016/0003-9861(82)90131-x. [DOI] [PubMed] [Google Scholar]
  17. Triplett E. W., Heitholt J. J., Evensen K. B., Blevins D. G. Increase in Internode Length of Phaseolus lunatus L. Caused by Inoculation with a Nitrate Reductase-deficient Strain of Rhizobium sp. Plant Physiol. 1981 Jan;67(1):1–4. doi: 10.1104/pp.67.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vaitukaitis J. L. Production of antisera with small doses of immunogen: multiple intradermal injections. Methods Enzymol. 1981;73(Pt B):46–52. doi: 10.1016/0076-6879(81)73055-6. [DOI] [PubMed] [Google Scholar]
  19. Verma D. P., Bal A. K. Intracellular site of synthesis and localization of leghemoglobin in root nodules. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3843–3847. doi: 10.1073/pnas.73.11.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weeden N. F., Higgins R. C., Gottlieb L. D. Immunological similarity between a cyanobacterial enzyme and a nuclear DNA-encoded plastid-specific isozyme from spinach. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5953–5955. doi: 10.1073/pnas.79.19.5953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Woo K. C. Ureide Synthesis in a Cell-Free System from Cowpea (Vigna unguiculata [L.] Walp.) Nodules : STUDIES WITH O(2), pH, AND PURINE METABOLITES. Plant Physiol. 1981 Jun;67(6):1156–1160. doi: 10.1104/pp.67.6.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES