Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 May;78(1):1–3. doi: 10.1104/pp.78.1.1

Electron Spin Resonance Studies of Ionic Permeability Properties of Thylakoid Membranes of Beta vulgaris and Avicennia germinans1

Marilyn C Ball 1,2,3,2, Rolf J Mehlhorn 1,2,3, Norman Terry 1,2,3, Lester Packer 1,2,3
PMCID: PMC1064664  PMID: 16664179

Abstract

Measurement of intrathylakoid aqueous volumes by electron spin resonance spectroscopy was used to study ionic permeability properties of thylakoid membranes isolated from Beta vulgaris L. and Avicennia germinans L. The thylakoids behaved as perfect osmometers in the presence of sorbitol and betaine. Thylakoids exposed to hypertonic solutions of NaCl and KCl shrank and subsequently swelled, requiring 10 minutes to regain their original volume. The initial influx rate calculated from the kinetics of changes in intrathylakoid volume in response to 450 millimolar gradients of NaCl and KCl was 2.3 × 10−13 moles per square centimeter per second. These data show that the passive permeability to NaCl and KCl was low.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball M. C., Taylor S. E., Terry N. Properties of Thylakoid Membranes of the Mangroves, Avicennia germinans and Avicennia marina, and the Sugar Beet, Beta vulgaris, Grown under Different Salinity Conditions. Plant Physiol. 1984 Oct;76(2):531–535. doi: 10.1104/pp.76.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barber J. Stimulation of millisecond delayed light emission by KCl and NaCl gradients as a means of investigating the ionic permeability properties of the thylakoid membranes. Biochim Biophys Acta. 1972 Jul 12;275(1):105–116. doi: 10.1016/0005-2728(72)90029-1. [DOI] [PubMed] [Google Scholar]
  4. Blumwald E., Mehlhorn R. J., Packer L. Ionic Osmoregulation during Salt Adaptation of the Cyanobacterium Synechococcus 6311. Plant Physiol. 1983 Oct;73(2):377–380. doi: 10.1104/pp.73.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Junge W., Witt H. T. On the ion transport system of photosynthesis--investigations on a molecular level. Z Naturforsch B. 1968 Feb;23(2):244–254. doi: 10.1515/znb-1968-0222. [DOI] [PubMed] [Google Scholar]
  6. Robinson S. P., Downton W. J., Millhouse J. A. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol. 1983 Oct;73(2):238–242. doi: 10.1104/pp.73.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Robinson S. P., Downton W. J. Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves. Arch Biochem Biophys. 1984 Jan;228(1):197–206. doi: 10.1016/0003-9861(84)90061-4. [DOI] [PubMed] [Google Scholar]
  8. Schuldiner S., Avron M. Anion permeability of chloroplasts. Eur J Biochem. 1971 Mar 11;19(2):227–231. doi: 10.1111/j.1432-1033.1971.tb01308.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES