Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 May;78(1):34–40. doi: 10.1104/pp.78.1.34

A Supernodulation and Nitrate-Tolerant Symbiotic (nts) Soybean Mutant 1

Bernard J Carroll 1, David L McNeil 1,2, Peter M Gresshoff 1
PMCID: PMC1064671  PMID: 16664203

Abstract

The nodulation characteristics of soybean (Glycine max) mutant nts382 are described. The mutant nodulated significantly more than the parent cultivar Bragg in the presence and absence of several combined nitrogen sources (KNO3, urea, NH4Cl, and NH4NO3). The number of nodules on the tap root and on lateral roots was increased in the mutant line. In the presence of KNO3 and urea, nitrogenase activity was considerably higher in nts382 than in Bragg. Mutant plants were generally smaller than wild-type plants. Although nts382 is a supernodulator, inoculation with Rhizobium japonicum was necessary to induce nodule formation and both trial strains CB1809 (= USDA136) and USDA110 elicited the mutant phenotype. Segregation of M3 progeny derived from a M2 wild-type plant indicated that the mutant character is inherited as a Mendelian recessive. The mutant is discussed in the context of regulation of nodulation and of hypotheses that have been proposed to explain nitrate inhibition of nodulation.

Full text

PDF
34

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Herridge D. F. Use of the ureide technique to describe the nitrogen economy of field-grown soybeans. Plant Physiol. 1982 Jul;70(1):7–11. doi: 10.1104/pp.70.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Israel D. W., Jackson W. A. Ion balance, uptake, and transport processes in n(2)-fixing and nitrate- and urea-dependent soybean plants. Plant Physiol. 1982 Jan;69(1):171–178. doi: 10.1104/pp.69.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kosslak R. M., Bohlool B. B. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol. 1984 May;75(1):125–130. doi: 10.1104/pp.75.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. McNeil D. L., Larue T. A. Effect of nitrogen source on ureides in soybean. Plant Physiol. 1984 Feb;74(2):227–232. doi: 10.1104/pp.74.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pierce M., Bauer W. D. A rapid regulatory response governing nodulation in soybean. Plant Physiol. 1983 Oct;73(2):286–290. doi: 10.1104/pp.73.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES