Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 May;78(1):139–143. doi: 10.1104/pp.78.1.139

Carbohydrates Stimulate Ethylene Production in Tobacco Leaf Discs 1

II. Sites of Stimulation in the Ethylene Biosynthesis Pathway

Sonia Philosoph-Hadas 1, Shimon Meir 1, Nehemia Aharoni 1
PMCID: PMC1064691  PMID: 16664186

Abstract

Galactose, sucrose, and glucose (50 millimolar) applied to tobacco leaf discs (Nicotiana tabacum L. cv `Xanthi') during a prolonged incubation (5-6 d) markedly stimulated ethylene production which, in turn, could be inhibited by aminoethoxyvinylglycine (2-amino-4-(2′-aminoethoxy)-trans-3-butenoic acid) (AVG) or Co2+ ions. These three tested sugars also stimulated the conversion of l-[3,4-14C]methionine to [14C]1-amino-cyclopropane-1-carboxylic acid (ACC) and to [14C]ethylene, thus indicating that the carbohydrates-stimulated ethylene production proceeds from methionine via the ACC pathway. Sucrose concentrations above 25 mm considerably enhanced ACC-dependent ethylene production, and this enhancement was related to the increased respiratory carbon dioxide. However, sucrose by itself could directly promote the step of ACC conversion to ethylene, since low sucrose concentrations (1-25 mm) enhanced ACC-dependent ethylene production also in the presence of 15% CO2.

The data suggest that the stimulation of ethylene production by sugars in tobacco leaf discs results from enhancement of ACC formation as well as from the conversion of ACC to ethylene, when both steps could be involved in regulation of ethylene biosynthesis.

Full text

PDF
139

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Yang S. F. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A. 1979 Jan;76(1):170–174. doi: 10.1073/pnas.76.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aharoni N., Anderson J. D., Lieberman M. Production and action of ethylene in senescing leaf discs: effect of indoleacetic Acid, kinetin, silver ion, and carbon dioxide. Plant Physiol. 1979 Nov;64(5):805–809. doi: 10.1104/pp.64.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aharoni N., Lieberman M. Ethylene as a regulator of senescence in tobacco leaf discs. Plant Physiol. 1979 Nov;64(5):801–804. doi: 10.1104/pp.64.5.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aharoni N., Lieberman M. Patterns of ehtylene production in senescing leaves. Plant Physiol. 1979 Nov;64(5):796–800. doi: 10.1104/pp.64.5.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aharoni N., Yang S. F. Auxin-induced ethylene production as related to auxin metabolism in leaf discs of tobacco and sugar beet. Plant Physiol. 1983 Nov;73(3):598–604. doi: 10.1104/pp.73.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burg S. P., Clagett C. O. Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem Biophys Res Commun. 1967 Apr 20;27(2):125–130. doi: 10.1016/s0006-291x(67)80050-0. [DOI] [PubMed] [Google Scholar]
  7. Lizada M. C., Yang S. F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem. 1979 Nov 15;100(1):140–145. doi: 10.1016/0003-2697(79)90123-4. [DOI] [PubMed] [Google Scholar]
  8. Macnicol P. K. Rapid Metabolic Changes in the Wounding Response of Leaf Discs following Excision. Plant Physiol. 1976 Jan;57(1):80–84. doi: 10.1104/pp.57.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Malik N. S., Thimann K. V. Metabolism of Oat Leaves during Senescence: VI. CHANGES IN ATP LEVELS. Plant Physiol. 1980 May;65(5):855–859. doi: 10.1104/pp.65.5.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meir S., Philosoph-Hadas S., Epstein E., Aharoni N. Carbohydrates stimulate ethylene production in tobacco leaf discs : I. Interaction with auxin and the relation to auxin metabolism. Plant Physiol. 1985 May;78(1):131–138. doi: 10.1104/pp.78.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Riov J., Yang S. F. Effects of exogenous ethylene on ethylene production in citrus leaf tissue. Plant Physiol. 1982 Jul;70(1):136–141. doi: 10.1104/pp.70.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Riov J., Yang S. F. Stimulation of ethylene production in citrus leaf discs by mannitol. Plant Physiol. 1982 Jul;70(1):142–146. doi: 10.1104/pp.70.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yu Y. B., Adams D. O., Yang S. F. Regulation of Auxin-induced Ethylene Production in Mung Bean Hypocotyls: Role of 1-Aminocyclopropane-1-Carboxylic Acid. Plant Physiol. 1979 Mar;63(3):589–590. doi: 10.1104/pp.63.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yu Y. B., Yang S. F. Auxin-induced Ethylene Production and Its Inhibition by Aminoethyoxyvinylglycine and Cobalt Ion. Plant Physiol. 1979 Dec;64(6):1074–1077. doi: 10.1104/pp.64.6.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES