Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Aug;78(4):803–806. doi: 10.1104/pp.78.4.803

Effects of Light Intensity and Oxidized Nitrogen Sources on Hydrogen Production by Chlamydomonas reinhardii1

Pedro J Aparicio 1,2, María P Azuara 1,2, Antonio Ballesteros 1,2, Victor M Fernández 1,2
PMCID: PMC1064826  PMID: 16664329

Abstract

Chlamydomonas reinhardii cells, after a period of dark anaerobic adaptation, evolve H2 not only in the dark but also in the light. Our results show that high irradiances impair prolonged H2 evolution, while under low irradiances or darkness H2 evolution proceeds for more than 50 hours. NO3 and NO2 suppress H2 evolution both in the dark or under low irradiance. Apparently the cells prefer these oxidized nitrogen sources to protons as electron acceptors, since both NO3 and NO2 become reduced to NH4+, which is excreted to the culture medium in high amounts. H2 evolution started once these oxidized anions were largely depleted from the medium. Moreover, H2 evolution was consistently associated with NH4+ excretion even if NH4+ was already present in high amounts in the medium. This observation indicates that the cells utilize not only their carbohydrate but also their protein reserves as sources of reducing power for H2 evolution. This conclusion was supported by the observation that when nitrogen-starved cells were made anaerobic in a nitrogen-free medium, they not only evolved H2 at very high rates but excreted concomitantly NH4+ up to concentrations in the millimolar range.

Full text

PDF
803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Mortenson L. E., Chen J. S. Hydrogenase. Biochim Biophys Acta. 1980 Dec;594(2-3):105–176. doi: 10.1016/0304-4173(80)90007-5. [DOI] [PubMed] [Google Scholar]
  2. Azuara M. P., Aparicio P. J. In Vivo Blue-Light Activation of Chlamydomonas reinhardii Nitrate Reductase. Plant Physiol. 1983 Feb;71(2):286–290. doi: 10.1104/pp.71.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Azuara M. P., Aparicio P. J. Spectral Dependence of Photoregulation of Inorganic Nitrogen Metabolism in Chlamydomonas reinhardii. Plant Physiol. 1985 Jan;77(1):95–98. doi: 10.1104/pp.77.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bamberger E. S., King D., Erbes D. L., Gibbs M. H(2) and CO(2) Evolution by Anaerobically Adapted Chlamydomonas reinhardtii F-60. Plant Physiol. 1982 Jun;69(6):1268–1273. doi: 10.1104/pp.69.6.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Amotz A., Erbes D. L., Riederer-Henderson M. A., Peavey D. G., Gibbs M. H(2) metabolism in photosynthetic organisms: I. Dark h(2) evolution and uptake by algae and mosses. Plant Physiol. 1975 Jul;56(1):72–77. doi: 10.1104/pp.56.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erbes D. L., King D., Gibbs M. Inactivation of Hydrogenase in Cell-free Extracts and Whole Cells of Chlamydomonas reinhardi by Oxygen. Plant Physiol. 1979 Jun;63(6):1138–1142. doi: 10.1104/pp.63.6.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenbaum E. Photosynthetic hydrogen and oxygen production: kinetic studies. Science. 1982 Jan 15;215(4530):291–293. doi: 10.1126/science.215.4530.291. [DOI] [PubMed] [Google Scholar]
  8. Healey F. P. The Mechanism of Hydrogen Evolution by Chlamydomonas moewusii. Plant Physiol. 1970 Feb;45(2):153–159. doi: 10.1104/pp.45.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KESSLER E. Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. II. Dunkel-Reduktion von Nitrat und Nitrit mit molekularem Wasserstoff. Arch Mikrobiol. 1957;27(2):166–181. [PubMed] [Google Scholar]
  10. Klein U., Betz A. Fermentative Metabolism of Hydrogen-evolving Chlamydomonas moewusii. Plant Physiol. 1978 Jun;61(6):953–956. doi: 10.1104/pp.61.6.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paneque A., Aparicio P. J., Cardenas J., Ma Vega J., Losada M. Nitrate as a hill reagent in a reconstituted chloroplast system. FEBS Lett. 1969 Apr;3(1):57–59. doi: 10.1016/0014-5793(69)80096-7. [DOI] [PubMed] [Google Scholar]
  12. Pow T., Krasna A. I. Photoproduction of hydrogen from water in hydrogenase-containing algae. Arch Biochem Biophys. 1979 May;194(2):413–421. doi: 10.1016/0003-9861(79)90635-0. [DOI] [PubMed] [Google Scholar]
  13. Roessler P., Lien S. Effects of electron mediator charge properties on the reaction kinetics of hydrogenase from Chlamydomonas. Arch Biochem Biophys. 1984 Apr;230(1):103–109. doi: 10.1016/0003-9861(84)90090-0. [DOI] [PubMed] [Google Scholar]
  14. Vinayakumar M., Kessler E. Physiological and biochemical contributions to the taxonomy of the genus Chlorella. X. Products of glucose fermentation. Arch Microbiol. 1975 Mar 12;103(1):13–19. doi: 10.1007/BF00436324. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES