Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Aug;78(4):826–829. doi: 10.1104/pp.78.4.826

Leaf Conductance in Relation to Rate of CO2 Assimilation

II. Effects of Short-Term Exposures to Different Photon Flux Densities

Suan-Chin Wong 1, Ian R Cowan 1, Graham D Farquhar 1
PMCID: PMC1064831  PMID: 16664334

Abstract

When photon flux density incident on attached leaves of Zea mays L. was varied from the equivalent of 0.12 of full sunlight to full sunlight, leaf conductance to CO2 transfer, g, changed in proportion to the change in rate of CO2, assimilation, A, with the result that intercellular partial pressure of CO2 remained almost constant. The proportionality was the same as that previously found in g and A measured at one photon flux density in plants of Zea mays L. grown at different levels of mineral nutrition, light intensities, and ambient partial pressures of CO2. In shade-grown Phaseolus vulgaris L. plants, A as photon flux density was increased from about 0.12 up to about 0.5 full sunlight, the proportionality being almost the same in plants grown at low and at high light intensity.

When photon flux density incident on the adaxial and abaxial surfaces of the isolateral leaves of Eucalyptus pauciflora Sieb. ex Spreng was varied, g and A also varied proportionally. The leaf conductance in a particular surface was affected by the photon flux density at the opposite surface to a greater extent than was expected on the basis of transmittance. The results indicated that stomata may, in some way, be sensitive to the photon flux absorbed within the leaf as a whole.

Full text

PDF
826

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Sharkey T. D., Raschke K. Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L. Plant Physiol. 1981 Nov;68(5):1170–1174. doi: 10.1104/pp.68.5.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Wong S. C., Cowan I. R., Farquhar G. D. Leaf Conductance in Relation to Assimilation in Eucalyptus pauciflora Sieb. ex Spreng: Influence of Irradiance and Partial Pressure of Carbon Dioxide. Plant Physiol. 1978 Oct;62(4):670–674. doi: 10.1104/pp.62.4.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Wong S. C., Cowan I. R., Farquhar G. D. Leaf Conductance in Relation to Rate of CO(2) Assimilation: I. Influence of Nitrogen Nutrition, Phosphorus Nutrition, Photon Flux Density, and Ambient Partial Pressure of CO(2) during Ontogeny. Plant Physiol. 1985 Aug;78(4):821–825. doi: 10.1104/pp.78.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES