Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Aug;78(4):830–834. doi: 10.1104/pp.78.4.830

Leaf Conductance in Relation to Rate of CO2 Assimilation

III. Influences of Water Stress and Photoinhibition

Suan-Chin Wong 1, Ian R Cowan 1, Graham D Farquhar 1
PMCID: PMC1064832  PMID: 16664335

Abstract

Rates of CO2 assimilation and leaf conductances to CO2 transfer were measured in plants of Zea mays during a period of 14 days in which the plants were not rewatered, and leaf water potential decreased from −0.5 to −8.0 bar. At any given ambient partial pressure of CO2, water stress reduced rate of assimilation and leaf conductance similarly, so that intercellular partial pressure of CO2 remained almost constant. At normal ambient partial pressure of CO2, the intercellular partial pressure of CO2 was estimated to be 95 microbars. This is the same as had been estimated in plants of Zea mays grown with various levels of nitrogen supply, phosphate supply and irradiance, and in plants of Zea mays examined at different irradiances.

After leaves of Phaseolus vulgaris L. and Eucalyptus pauciflora Sieb. ex Spreng had been exposed to high irradiance in an atmosphere of CO2-free N2 with 10 millibars O2, rates of assimilation and leaf conductances measured in standard conditions had decreased in similar proportions, so that intercellular partial pressure of CO2 remained almost unchanged. As the conductance of each epidermis that had not been directly irradiated had declined as much as that in the opposite, irradiated surface it was hypothesized that conductance may have been influenced by photoinhibition within the mesophyll tissue.

Full text

PDF
830

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Mohanty P., Boyer J. S. Chloroplast Response to Low Leaf Water Potentials: IV. Quantum Yield Is Reduced. Plant Physiol. 1976 May;57(5):704–709. doi: 10.1104/pp.57.5.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Outlaw W. H., Mayne B. C., Zenger V. E., Manchester J. Presence of Both Photosystems in Guard Cells of Vicia faba L: IMPLICATIONS FOR ENVIRONMENTAL SIGNAL PROCESSING. Plant Physiol. 1981 Jan;67(1):12–16. doi: 10.1104/pp.67.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Potter J. R., Boyer J. S. Chloroplast Response to Low Leaf Water Potentials: II. Role of Osmotic Potential. Plant Physiol. 1973 Jun;51(6):993–997. doi: 10.1104/pp.51.6.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Powles S. B., Critchley C. Effect of Light Intensity during Growth on Photoinhibition of Intact Attached Bean Leaflets. Plant Physiol. 1980 Jun;65(6):1181–1187. doi: 10.1104/pp.65.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Wong S. C., Cowan I. R., Farquhar G. D. Leaf Conductance in Relation to Assimilation in Eucalyptus pauciflora Sieb. ex Spreng: Influence of Irradiance and Partial Pressure of Carbon Dioxide. Plant Physiol. 1978 Oct;62(4):670–674. doi: 10.1104/pp.62.4.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Wong S. C., Cowan I. R., Farquhar G. D. Leaf Conductance in Relation to Rate of CO(2) Assimilation: I. Influence of Nitrogen Nutrition, Phosphorus Nutrition, Photon Flux Density, and Ambient Partial Pressure of CO(2) during Ontogeny. Plant Physiol. 1985 Aug;78(4):821–825. doi: 10.1104/pp.78.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Wong S. C., Cowan I. R., Farquhar G. D. Leaf Conductance in Relation to Rate of CO(2) Assimilation: II. Effects of Short-Term Exposures to Different Photon Flux Densities. Plant Physiol. 1985 Aug;78(4):826–829. doi: 10.1104/pp.78.4.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Zeiger E., Armond P., Melis A. Fluorescence Properties of Guard Cell Chloroplasts: EVIDENCE FOR LINEAR ELECTRON TRANSPORT AND LIGHT-HARVESTING PIGMENTS OF PHOTOSYSTEMS I AND II. Plant Physiol. 1981 Jan;67(1):17–20. doi: 10.1104/pp.67.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES