Skip to main content
Scientific Data logoLink to Scientific Data
. 2023 Nov 17;10:808. doi: 10.1038/s41597-023-02728-5

The seafloor from a trait perspective. A comprehensive life history dataset of soft sediment macrozoobenthos

Kasper J Meijer 1,✉,#, Joao Bosco Gusmao 2,3,#, Lisa Bruil 1, Oscar Franken 1,4, Ise A Grimm 1, Tjisse van der Heide 1,4, Nadia Hijner 1, Sander J Holthuijsen 4,5, Lisa Hübner 1, David W Thieltges 1,4, Han Olff 1, Britas Klemens Eriksson 1,✉,#, Laura L Govers 1,4,✉,#
PMCID: PMC10656422  PMID: 37978182

Abstract

Biological trait analysis (BTA) is a valuable tool for evaluating changes in community diversity and its link to ecosystem processes as well as environmental and anthropogenic perturbations. Trait-based analytical techniques like BTA rely on standardised datasets of species traits. However, there are currently only a limited number of datasets available for marine macrobenthos that contain trait data across multiple taxonomic groups. Here, we present an open-access dataset of 16 traits for 235 macrozoobenthic species recorded throughout multiple sampling campaigns of the Dutch Wadden Sea; a dynamic soft bottom system where humans have long played a substantial role in shaping the coastal environment. The trait categories included in this dataset cover a variety of life history strategies that are tightly linked to ecosystem functioning and the resilience of communities to (anthropogenic) perturbations and can advance our understanding of environmental changes and human impacts on the functioning of soft bottom systems.

Subject terms: Macroecology, Community ecology, Conservation biology, Ecosystem ecology

Background & Summary

Traditionally, changes in species assemblages are examined to understand the response of communities to underlying environmental conditions1. However, biogeographical variation in species distributions causes regional variation in the species pool. Effects on species communities caused by environmental shifts can then be obscured when studying systems over large geographical gradients as the spatial shifts in species assemblages can form a major confounding factor2. These complications can be overcome by adopting functional traits in addition to the traditional species-based approach24. The functional trait approach is centred around the environmental filtering and habitat templet concepts2,5,6. Environmental conditions select for species with certain characteristics, creating species assemblages with similar functional traits6,7. Across large spatial scales, similar abiotic conditions can host diverse species communities which are still functionally similar. Thus, functional traits can help to understand why different taxonomic entities group together in specific habitats, whereas it is more complex to understand the ecological mechanism behind the relationship between species distributions and habitat characteristics purely based on taxonomy alone810. As such, a functional trait approach allows for the generalisation of community responses to the environment which makes it an ideal analytical approach in studies on ecosystem functioning as well as large scale human impact studies.

Functional traits revolve around phenotypic characteristics of species that determine both their response to environmental stressors11 and their effects on ecological processes12. These functional traits synergistically determine a species’ fitness by affecting growth, survival, and reproduction13. Only species with a set type of traits can be successful under certain environmental conditions following the habitat templet concept14,15. With this knowledge, a functional trait approach can identify communities exposed to, and/or sensitive to, disturbances16. Additionally, the type of traits chosen to include in the analysis determines the functional aspects of the environment that can be evaluated. Changes in the occurrence of these traits can then be translated into changes or loss of ecosystem services2,17. For example, the potential for carbon sequestration in marine soft sediment systems is dependent on bioturbation activity of macrobenthic species which together with body size and mobility determines aeration of the soil among many other factors2. Multi-trait-based approaches then allow for more holistic assessments of ecosystem functioning.

The assessment of ecosystem functioning rapidly improves in quality with the inclusion of more traits3. However, compiling information of many traits for numerous species is time consuming, especially when the aim is to assess species communities over large geographical extents where species numbers can quickly accumulate. Information on traits is lacking for many species or only accessible through grey literature often in languages other than English. Explicit selection of traits that are expected to be relevant to specific research questions, e.g. bioturbation, body size, and living depth for nutrient cycling18, may reduce the time required to compile comprehensive trait datasets. On the other hand, open access availability of already compiled datasets would accelerate the application of trait approaches to current questions19. The access to such datasets can then more rapidly give insights in the change of ecosystem functioning, especially in the face of biodiversity loss19. In addition, such datasets can continuously be expanded with new trait categories depending on the questions that need to be answered, as well as new species to expand the geographical boundaries for which the analysis can be performed. The availability of dynamic open access trait datasets can therefore facilitate the generalisation of species and community responses to changing conditions and anthropogenic influences20.

The south-eastern range of the North Sea from the Netherlands to Denmark is characterised by a system of barrier islands that define a large intertidal soft-bottom ecosystem called the Wadden Sea. The macrozoobenthic community in the Wadden Sea is a pivotal part of many ecosystem functions and services21,22. For example, macrozoobenthos is involved in many biogeochemical pathways and nutrient fluxes23, but also provides important feeding grounds for commercially important fish species24. Thus, changes in macrozoobenthic communities due to environmental changes has implications for ecosystem functioning, which can also affect higher trophic levels such as predatory fish and bird species. The Wadden Sea is a key area for millions of migratory waders as well as an important area for many migratory fish species, that both depend on the productive macrobenthic communities as an important food source2527. This emphasises the need to understand community dynamics and functioning of the macrozoobenthic community in this system.

While several datasets on macrozoobenthic traits are available2830, a comprehensive dataset on functional traits for the macrozoobenthic species found in the Dutch Wadden Sea is not available despite the large monitoring programmes focusing on the macrozoobenthic communities in the Dutch Wadden Sea3032. The beginning of such a trait dataset was compiled by Gusmao et al.16, including many of the intertidal species found in the Dutch Wadden Sea3032. This dataset contains mostly functional trait categories related to the resistance of species to perturbations, such as living depth and body size8,29,33. However, traits related to recovery, such as reproductive frequency and mobility, are equally important to understand the recovery of communities after a disturbance as well as the (re)colonisation potential of many species29. Therefore, we here present an expanded dataset adapted from Gusmao et al.16, containing 235 taxonomic units found in multiple sampling campaigns over the entire Dutch Wadden Sea3032. This new comprehensive dataset complements the intertidal species list and also includes sublittoral species. In addition, it provides 10 new functional traits regarding the response of macrozoobenthic communities to disturbances taking into account both resistance and recovery related functional traits8,29,33. Of the 235 taxa occurring in this dataset, only 33 taxa (14%) overlap with the dataset of Clare et al.28, and 94 taxa (40%) occur in the dataset of Beauchard et al.29 that is included in the “Btrait” R package34. Of all our included taxa, the Marine Species Traits portal35 only contains information on body size for 185 (79%) taxa, on feeding mode for 31 (31%) taxa, and on larval development location for 2 (1%) taxa. It also adds six traits not included in the dataset of Clare et al.28, and six traits not included in the dataset of Beauchard et al.29,34.

Given that many species included in this dataset are also present in adjacent areas such as the North Sea, it is applicable to a wider range of study systems. Applicability of this dataset is further greatly enhanced by publishing it in a dynamic form that can be periodically updated to include new species and trait categories. This is essential to ensure its long-term applicability as new information on biological traits and ecological functioning can be added as they are published as well as expand to other areas. Having such a comprehensive trait dataset readily available will reduce the time lag between data-collection and trait-based analyses to study impacts of environmental changes and human impacts. Ultimately, this can facilitate the translation of these findings into management actions.

Methods

Study area

The Wadden Sea (Fig. 1) is one of the largest and most important intertidal ecosystems worldwide36,37. Its unique geomorphological and ecological processes as well as its characteristic biodiversity and sheer abundance of protected species has led to the designation as UNESCO World Heritage site for the Dutch and German areas of the Wadden Sea in 200938 and the Danish area in 2014. Large parts of its ecological functioning is determined by macrozoobenthic communities39. Likewise, these macrozoobenthic communities are of key importance for higher trophic levels38.

Fig. 1.

Fig. 1

Map of study area. (a) Map showing north-west Europe, highlighting the Dutch Wadden Sea in red; (b) closeup of the Dutch Wadden Sea with underlying bathymetric map and tidal basins indicated by black lines.

Dataset

The trait dataset was constructed containing 16 life history traits (Table 1), adapted from Gusmao et al.16, and extended for all taxa found within a large subtidal sampling campaign in 201932. The initial dataset contained information on 71 taxonomic units for bioturbation, living depth, adult body size, feeding mode, longevity, and adult movement. The current dataset has been extended to include 235 taxonomic units, of which 187 on species level, and 10 new trait categories: age of sexual maturation, reproductive frequency, fecundity, living habitat, reproductive mode, larval development location, skeleton, reproductive season, offspring size, and offspring type. Each trait is divided into several modalities that reflect the range of possible attributes a taxa can display. Information for each taxonomic unit was collected from research articles23,40527, textbooks62,251,528597, and existing datasets and species reviews29,598706 to compile a holistic trait dataset for macrozoobenthic taxa occurring in the Dutch Wadden Sea. Primary literature was given preference when available, and expert judgement was only used when no literature could be found. Taxa were scored for each modality using fuzzy coding707 with a score ranging from 0 to 3. Here, a score of 0 means no affinity with the scored modality, and 3 indicates absolute affinity with the modality. Hence, when given a score of 3 for a certain modality, the species in question has no known affinity for any of the other modalities within that category. Taxa expressing affinity for multiple modalities can be incorporated by scoring the modality with a 2 or a 1. Multiple scores of 2 would indicate equal affinity for multiple modalities whereas a 1 is a weaker affinity for a certain modality than for others. Fuzzy coding allows for the incorporation of interspecific variation in trait expression2 as well as uncertainty in trait expression708. In addition, fuzzy coding facilitates a common coding method for both binary classified traits (e.g. bioturbation types) and continuous classifications (e.g. life span)709. The 0–3 coding scheme used here is most commonly used across other studies3,709711 and advocated as a standard coding scheme by Degen et al.709 In case no information on a trait was available for a certain taxa all modalities are scored as a 0. Ultimately, the species-trait combination for which no data was available is effectively not included in the analysis. The fuzzy scores can then be standardized to a score between 0–1 using a min-max normalization to assign individual weights to modalities within all traits and keeping the overall weight of all traits equal regardless of the number of modalities707,708. The predictive power of the trait dataset only increases with the inclusion of new information on species life history and functional traits.

Table 1.

Overview of missing data per class.

Class Adult body size (mm) Adult living depth (cm) Adult living habitat Adult locomotion Age sexual maturation (y) Bioturbation type Fecundity Feeding Mode Larval development location Longevity (y) Offspring size (μm) Offspring type Reproductive frequency Reproductive mode Reproductive season Skeleton Overall
Anthozoa (5) 2 3 2 7 (9%)
Ascidiacea (2) 0 (0%)
Asteroidea (2) 0 (0%)
Bivalvia (27) 3 1 2 1 7 (2%)
Clitellata (1) 1 1 2 (13%)
Echinoidea (1) 0 (0%)
Gastropoda (8) 0 (0%)
Gymnolaemata (10) 1 4 7 9 3 6 5 35 (22%)
Hydrozoa (7) 1 2 1 1 1 6 (5%)
Malacostraca (63) 1 3 5 1 3 4 7 6 30 (3%)
Nematoda (1) 1 1 (6%)
Nemertea (2) 1 1 1 3 (9%)
Ophiuroidea (3) 0 (0%)
Polychaeta (96) 8 1 1 4 3 4 2 14 14 51 (3%)
Polyplacophora (1) 0 (0%)
Pycnogonida (1) 1 1 (6%)
Thecostraca (5) 0 (0%)
Total (235) 1 (0.4%) 12 (5%) 1 (0.4%) 1 (0.4%) 14 (6%) 23 (10%) 1 (0.4%) 17 (7%) 12 (5%)  33 (14%)  143 (4%)

Taxa included in the dataset have been categorized by taxonomical class except for Nematoda and Nemertea which are on phylum level. Numbers behind each class represent the number of taxa within that class included in the dataset. For each trait the number of taxa within that class with missing data is indicated. Lastly, the overall number of missing data per trait and class is shown.

The trait dataset was compiled by several contributors. To assure validity of the dataset, the entire dataset was thoroughly checked by two of the co-authors. Irregularities and debatable scores were then checked and discussed with specialists.

A dynamic dataset was created in R-Studio, R-version 4.2.2712. using the ‘shiny’713, ‘shinydashboard’714, and ‘DT’715 packages.

Definition of traits

In the following section we provide a description and the rationale behind each functional trait category. For an overview of each category and a description of each of its modalities see Supplementary Table 1.

Bioturbation mode

Bioturbation is the reworking of soil and sediment through animal and plant activity716719. Bioturbating activity has an important effect on many ecosystem functions, such as sediment stabilisation, nutrient cycling, and carbon sequestration2,39,720. Modalities within bioturbation have been adapted from Gusmao et al.16, and include epifauna, surficial modifier, upward conveyor, downward conveyor, biodiffuser, and regenerator (Supplementary Table 1).

Adult living depth (cm)

The living depth indicates the depth range within the sediment that different macrozoobenthic taxa reside in. Species with deeper depth ranges have a greater chance of survival as they are less vulnerable to bottom disturbances29. Additionally, bioturbation mode and living depth interact to determine the depth penetration of oxygenated water and thus have different effects on nutrient cycling18. Modalities within living depth have been adapted from Gusmao et al.16, and include surface, >0 and ≤3 cm, >3 and ≤8 cm, >8 and ≤15 cm, >15 and ≤25 cm, and >25 cm (Supplementary Table 1).

Adult body size (mm)

Body size correlates with many functional factors among which are food web structure, trophic level, and energy transfer721,722. In addition, adult body size is an indicator for the susceptibility of mechanical or physical disturbances. Smaller sized individuals can more easily escape bottom impact29,723 and larger sized species are generally more heavily impacted by bottom disturbance due to a higher mortality rate but also a slower recovery rate723. Modalities within body size have been adapted from Gusmao et al.16, and include ≤5 mm, >5 and ≤10 mm, >10 and ≤20 mm, >20 and ≤40 mm, >40 and ≤80 mm, >80 and ≤160 mm, and >160 mm (Supplementary Table 1)

Feeding mode

Feeding mode is an important indicator of the functional role of species within the food web as well as the trophic level of a species within the food web (e.g. detritivore, herbivore or predator)721. Modalities within feeding mode have been adapted from Gusmao et al.16, and include deposit-feeder, suspension-feeder, grazer, opportunist or scavenger, and predator (Supplementary Table 1).

Longevity (y)

Longevity is a good indicator of population stability over time but also the dispersal potential in combination with mobility as longer living species simply have more time to colonise new areas721. In addition, longevity is generally considered a good proxy for life-history strategy as longer living species are usually associated with long generation times and thus highly sensitive to disturbance724. Modalities within longevity have been adapted from Gusmao et al.16, and include the categories: ≤1 year, >1 and ≤3 years, >3 and ≤6 years, >6 and ≤10 years, and >10 years (Supplementary Table 1)

Age of sexual maturation (y)

The age of sexual maturation determines the generation time of a population and has implications for the recovery of populations after a disturbance721. Modalities within this functional trait have been categorised into ≤1 year, >1 and ≤2 years, >2 and ≤5 years, >5 and ≤10 years, and >10 years (Supplementary Table 1)

Reproductive frequency

The frequency with which species reproduce in combination with the abundance of species is important in determining the speed with which a population can recover after a disturbance721. Reproductive frequency has been categorised into continuous / ≥ 2x per year, annual 1x,biennial, and semelparous (Supplementary Table 1).

Fecundity

The fecundity of taxa in combination with reproductive mode affect the recoverability of taxa after a disturbance. Higher fecundity implies higher probability of young individuals with each reproductive event, decreasing the time it takes to restore the population to a pre-disturbed state721. Here, fecundity is defined as the reproductive output per reproductive event in the unit of the type of offspring released. Modalities within fecundity have been categorised into ≥1 and ≤50, >50 and ≤500, >500 and ≤2.500, >2.500 and ≤10.000, >10.000 and ≤20.000, >20.000 and ≤100.000, and >100.000 offspring (Supplementary Table 1)

Adult locomotion

The locomotion of macrozoobenthic organisms is an indicator for the recolonisation potential of taxa after a disturbance29. Modalities within adult locomotion have been adapted from Gusmao et al.16, and include the categories: Sessile, swim/float, crawl/walk, and burrow/tube (Supplementary Table 1).

Adult living habitat

The living habitat of species is an indicator for the susceptibility of species to disturbances and their dependencies on other species. Species that are attached or live on other species are often more vulnerable to disturbances due to their protruding nature725. Free-living species are more easily able to escape disturbance or recolonise after disturbances. Tube living species have an extra layer of protection through the formation of external structures726. The modalities within living habitats are therefore categorised as tube, burrow, free-living, crevice, epi/endo-zoic/phytic, and attached (Supplementary Table 1).

Reproductive mode

The mode of reproduction is an indicator for the recovery of populations after disturbance as well as the vulnerability of larva, eggs, or juveniles after release. Parental care through brooding generally increases the survival rate of new individuals whereas broadcasted eggs are generally more vulnerable727729. On the other hand, egg sacs that are deposited on the sediment or attached to structures might be vulnerable to physical disturbances or predation730. Modalities within reproductive mode have been categorised as asexual, broadcast, brooder, and benthic (Supplementary Table 1).

Larval development location

Different larval development locations have different implications for the recolonisation capabilities of species. Planktonic stages can disperse over larger geographical ranges than larvae that directly develop within the sediment721. The modalities within this functional trait are categorised into planktonic, lecithotrophic and benthic/direct (Supplementary Table 1).

Skeleton

The presence and type of skeleton can have direct implications for the intensity of direct impact on species as it determines the fragility of species to physical disturbance29. Additionally, species with calcareous skeletons can be affected by ocean acidification721 which can have ramifications for resource use and energy transfer and physiological costs for these species may increase731,732. Skeleton has been categorised in the modalities soft, calcified and chitinous (Supplementary Table 1).

Reproductive season

Reproductive season can determine recovery potential after seasonal disturbances733 and can have implications for management actions such as temporal closures. Reproductive season has been categorised into: Winter, spring, summer, and autumn (Supplementary Table 1).

Offspring size (µm)

Offspring size is an indicator of development speed and thus of recovery after disturbances29,727,728. Offspring size has been categorised into: ≤100 µm, >100 and ≤500 µm, >500 and ≤1500 µm, and >1500 µm (Supplementary Table 1).

Offspring type

The type of offspring released affects the vulnerability of the earliest life stage to environmental and biotic conditions as well as determines the development speed of new individuals29. Broadcasted eggs are more susceptible to planktotrophy than are individuals immediately released as larvae or juveniles727,728. Modalities within offspring type have been categorised into: Juvenile, larva, and egg (Supplementary Table 1).

Statistical analysis

All analyses were conducted in R-Studio, R-version 4.2.2712. First, the trait space for all taxa occurring in the dataset was investigated. Trait modality scores were standardised to a value between 0 and 1 where the row sum for each trait equals 1 for every taxa using the ‘ade4’ package734. We then evaluated the missingness of data per taxonomic class. The combination of different trait modalities and the trait space was then investigated to identify any impossible combinations. The number of occurrences of each possible combination was first summed. The relative occurrence of each trait modality combination was then determined by dividing the number of occurrences by the number of taxa included in the dataset.

Data Records

A static version of the dataset as used in the preparation of this paper can be found in the dataverseNL (DANS) repository through 10.34894/Z43J6I735. In addition, a dynamic version is hosted at the University of Groningen and can be accessed via marinetraits.web.rug.nl. Here, periodic updates will be uploaded as new traits and/or species are added, and older versions can be retrieved for reproducibility. The dataset can be easily downloaded from here as either a csv or excel file. The dataset consists out of three data sheets: Metadata, Traits, and References

Metadata

The metadata sheet contains information on the version of the dataset as well as a descriptor of all included trait categories as well as modalities (Supplementary Table 1).

Traits

The Traits data sheet contains all trait information on the different taxonomic groups. The first two columns give the latest scientific name (reference date: April 28th 2023), as well as the AphiaID of the taxa which can be linked back to the WoRMS database736 for the latest taxonomic information. Each subsequent column is a modality belonging to a functional trait (Supplementary Table 1). The modalities have values ranging between 0 and 3 based on fuzzy coding707 and the reference column contains numbers linking to the References sheet and is used to refer to literature or other existing datasets used to construct the scores.

References

The References data sheet contains three columns. The first column is the reference id which is the unique numeric identifier used in the Reference column of the Traits data sheet. The second column is the reference itself as well as certain choices made when compiling the dataset. For example, in some cases, information on species level was missing in which case genus level information was used, this is then indicated through a reference id. Reference id’s for these choices are indicated by letters, whereas other references are numbered. Letters referring to choices based on similar species are always followed by reference id’s relating to the literature on which decisions were made. For higher level taxonomic units, scores were based on species in the dataset belonging to that group and indicated with the letter “p”. Finally, the last column contains any permanent identifiers related to the reference.

Technical Validation

In total, there were 143 (4%) cases for which information on traits could not be compiled out of 3760 species-trait combinations. This was most often the case for reproductive frequency with 33 cases of missing information (Table 1). Reproductive season had 28 cases of missing information, fecundity had 23 cases of missing information, longevity had 17 cases of missing information, age of sexual maturation had 14 cases of missing information, adult living depth and offspring size had 12 cases of missing information, and adult body size, adult living habitat, adult locomotion, and feeding mode had 1 case of missing information (Table 1). Bioturbation type, larval development location, offspring type, reproductive mode, and skeleton had no cases of missing information (Table 1). Relatively, the Gymnolaemata had the most cases of missing data, followed by Clitellata (Table 1). These classes are also indicated by Tyler et al.737 as two of the classes with the largest lack of knowledge on functional traits. Most taxa included in the dataset were included within the Polychaeta, Malacostraca, and Bivalvia (Table 1) which absolutely had the highest numbers of missing data (Table 1) but in relative terms only little (3%, 3%, and 2% respectively).

Out of the 2849 possible modality pairings, 2757 occur in the dataset (Fig. 2). The bioturbation type regenerator, and biennial reproductive frequency were found in the least number of pairings (49 and 46 out of 75 possible pairings respectively) (Fig. 2). Tube living taxa were never associated with high longevity or late sexual maturation (Fig. 2). Predators, chitinous, and epi/endo-zoic/phytic taxa never paired with either upward- or downward conveying bioturbation (Fig. 2). The highest number of occurrences was found for the pairing summer and spring seasonal reproduction (131 out of 235 taxa), followed by swim/float motility and burrowing living habitat (123 out of 235 taxa), and swim float motility and spring seasonal reproduction (114 out of 235 taxa) (Fig. 2). 129 out of 2849 possible modality pairings occurred only in one taxa in the dataset, 176 out 2849 possible pairings only occurred in 2 taxa, and 113 pairings in only 3 taxa. Several impossible combinations of modalities can be found in the dataset. For example, the few occurring combinations of longevity modalities that are lower than the sexual maturation (Fig. 2). This can be attributed to the high intraspecific variability within higher order taxa (e.g. Bivalvia).

Fig. 2.

Fig. 2

Overview matrix of the trait space. The matrix indicates the presence (green) of combinations between modalities within taxa contained in the dataset. The colour and size represent the relative occurrence of each trait combination within the dataset, with 1 relating to the trait combination present in all taxa included in the dataset. A white square indicates that the specific combination of modalities was not found among the taxa in the dataset.

Usage Notes

To build onto this dataset, it is possible for updated versions to be published through the dynamic version of the dataset marinetraits.web.rug.nl. New information, new trait groups or new species can be added to the dataset by sending this information including references to the corresponding author. New information will then be included in the next periodic update of the dataset. Information on the dynamic version of the dataset is liable to change, though older versions of the dataset will remain available through the platform. Note that the data descriptor was peer reviewed in 2023 based on the data available on the platform at the time. This data can be found on the static repository735.

Trait based measures can be sensitive to the amount of missing data738. Recent advances have been made in methods to impute missing trait information combining phylogenetic information and structural equation modelling739. Other imputation methods have been used to fill out missing trait data and can be employed to completely fill out a dataset. Still, each method comes with its own biases and is dependent on the predictive power of the available data and do not always perform better than datasets with missing information740. Therefore, no imputation methods have been applied here to fill out missing data and leave this to the user to make sound decisions in the methods employed.

For an overview of imputation methods and their performance in imputing missing trait data see740. For review of statistical methods using multiple functional traits see8 and741.

Utilizing this dataset in combination with other published functional trait datasets28,34,35 will greatly enhance the taxonomy covered, expanding the use of functional trait analyses to other regions.

Many sources have been used in the compilation of this dataset, including secondary literature and compiled trait datasets or reviews. Interpretation of trait data may differ on dataset level depending on literature included and the region and can cause variation among datasets. Likewise, some trait information is only available through secondary literature and might not always be quality controlled. Nevertheless, when no primary literature is available, including secondary literature as source of information is preferably better than recording no data for a certain trait. Users are therefore encouraged to check the used literature for applicability of their own analysis and include individual references to acknowledge the original data.

Supplementary information

41597_2023_2728_MOESM1_ESM.docx (20.6KB, docx)

Supplementary information to: The seafloor from a trait perspective. A comprehensive life history dataset of soft sediment macrozoobenthos.

Acknowledgements

The authors would like to thank all students and volunteers that have worked with, and contributed to, the current version of the dataset. This study was funded by Waddenfonds grant “Waddentools: habitatheterogeniteit” registered under reference number WF2018-187059. L.G. was additionally funded by NWO grant 016.Veni.181.087.

Author contributions

All authors contributed critically to the manuscript. K.M.: Data acquisition, conceptualization, analyses, manuscript preparation. J.G.: Data acquisition, conceptualization. L.B.: Data acquisition, conceptualization. O.F.: Conceptualization. I.G.: Data acquisition. T.H.: Conceptualization. N.H.: Data acquisition. S.H.: Data acquisition, conceptualization. L.H.: Data acquisition. D.T.: Conceptualization. H.O.: Conceptualization. B.E.: Conceptualization, senior author. L.G.: Conceptualization, senior author.

Code availability

Code used to produce the graphs is available in the dataverseNL (DANS) repository alongside the static version of the dataset through 10.34894/Z43J6I. Figures and analysis were done using Rstudio version 2023.03.0742 and R version 4.2.2712.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Kasper J. Meijer, Joao Bosco Gusmao, Britas Klemens Eriksson, Laura L. Govers.

Contributor Information

Kasper J. Meijer, Email: k.j.meijer@rug.nl

Britas Klemens Eriksson, Email: b.d.h.k.eriksson@rug.nl.

Laura L. Govers, Email: l.l.govers@rug.nl

Supplementary information

The online version contains supplementary material available at 10.1038/s41597-023-02728-5.

References

  • 1.Aarnio K, Mattila J, Törnroos A, Bonsdorff E. Zoobenthos as an environmental quality element: the ecological significance of sampling design and functional traits. Marine Ecology. 2011;32:58–71. doi: 10.1111/j.1439-0485.2010.00417.x. [DOI] [Google Scholar]
  • 2.Bremner J. Species’ traits and ecological functioning in marine conservation and management. Journal of Experimental Marine Biology and Ecology. 2008;366:37–47. doi: 10.1016/j.jembe.2008.07.007. [DOI] [Google Scholar]
  • 3.Bremner J, Rogers S, Frid C. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA) Ecological Indicators. 2006;6:609–622. doi: 10.1016/j.ecolind.2005.08.026. [DOI] [Google Scholar]
  • 4.Hewitt JE, Thrush SF. & Dayton, P. D. Habitat variation, species diversity and ecological functioning in a marine system. Journal of Experimental Marine Biology and Ecology. 2008;366:116–122. doi: 10.1016/j.jembe.2008.07.016. [DOI] [Google Scholar]
  • 5.Greenslade PJM. Adversity Selection and the Habitat Templet. The American Naturalist. 1983;122:352–365. doi: 10.1086/284140. [DOI] [Google Scholar]
  • 6.Keddy PA. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science. 1992;3:157–164. doi: 10.2307/3235676. [DOI] [Google Scholar]
  • 7.Boet O, Arnan X, Retana J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLOS ONE. 2020;15:e0228625. doi: 10.1371/journal.pone.0228625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Beauchard O, Veríssimo H, Queirós AM, Herman PMJ. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecological Indicators. 2017;76:81–96. doi: 10.1016/j.ecolind.2017.01.011. [DOI] [Google Scholar]
  • 9.Dolédec S, Chessel D, ter Braak CJF, Champely S. Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat. 1996;3:143–166. doi: 10.1007/BF02427859. [DOI] [Google Scholar]
  • 10.Legendre P, Galzin R, Harmelin-Vivien ML. Relating Behavior to Habitat: Solutions to the Fourth-corner Problem. Ecology. 1997;78:547–562. [Google Scholar]
  • 11.Reiss H, et al. Effects of fishing disturbance on benthic communities and secondary production within an intensively fished area. Marine Ecology Progress Series. 2009;394:201–213. doi: 10.3354/meps08243. [DOI] [Google Scholar]
  • 12.Petchey OL, Gaston KJ. Functional diversity: back to basics and looking forward. Ecology Letters. 2006;9:741–758. doi: 10.1111/j.1461-0248.2006.00924.x. [DOI] [PubMed] [Google Scholar]
  • 13.Violle C, et al. Let the concept of trait be functional! Oikos. 2007;116:882–892. doi: 10.1111/j.0030-1299.2007.15559.x. [DOI] [Google Scholar]
  • 14.Southwood TRE. Habitat, the Templet for Ecological Strategies? Journal of Animal Ecology. 1977;46:337–365. doi: 10.2307/3817. [DOI] [Google Scholar]
  • 15.Townsend C, Dolédec S, Scarsbrook M. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology. 1997;37:367–387. doi: 10.1046/j.1365-2427.1997.00166.x. [DOI] [Google Scholar]
  • 16.Gusmao JB, et al. Comparing taxonomic and functional trait diversity in marine macrozoobenthos along sediment texture gradients. Ecological Indicators. 2022;145:109718. doi: 10.1016/j.ecolind.2022.109718. [DOI] [Google Scholar]
  • 17.Díaz S, Cabido M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution. 2001;16:646–655. doi: 10.1016/S0169-5347(01)02283-2. [DOI] [PubMed] [Google Scholar]
  • 18.Jones D, Frid CLJ. Altering intertidal sediment topography: effects on biodiversity and ecosystem functioning. Marine Ecology. 2009;30:83–96. doi: 10.1111/j.1439-0485.2009.00306.x. [DOI] [Google Scholar]
  • 19.Gallagher RV, et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat Ecol Evol. 2020;4:294–303. doi: 10.1038/s41559-020-1109-6. [DOI] [PubMed] [Google Scholar]
  • 20.Schneider FD, et al. Towards an ecological trait-data standard. Methods in Ecology and Evolution. 2019;10:2006–2019. doi: 10.1111/2041-210X.13288. [DOI] [Google Scholar]
  • 21.Snelgrove PVR. Getting to the Bottom of Marine Biodiversity: Sedimentary Habitats: Ocean bottoms are the most widespread habitat on Earth and support high biodiversity and key ecosystem services. BioScience. 1999;49:129–138. doi: 10.2307/1313538. [DOI] [Google Scholar]
  • 22.Van Hoey G, et al. The use of benthic indicators in Europe: From the Water Framework Directive to the Marine Strategy Framework Directive. Marine Pollution Bulletin. 2010;60:2187–2196. doi: 10.1016/j.marpolbul.2010.09.015. [DOI] [PubMed] [Google Scholar]
  • 23.Queiros AM, et al. A bioturbation classification of european marine infaunal invertebrates. Ecology and Evolution. 2013;3:1–27. doi: 10.1002/ece3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Šiaulys A, Daunys D, Bučas M, Bacevičius E. Mapping an ecosystem service: A quantitative approach to derive fish feeding ground maps. Oceanologia. 2012;54:491–505. doi: 10.5697/oc.54-3.491. [DOI] [Google Scholar]
  • 25.Boere GC, Piersma T. Flyway protection and the predicament of our migrant birds: A critical look at international conservation policies and the Dutch Wadden Sea. Ocean & Coastal Management. 2012;68:157–168. doi: 10.1016/j.ocecoaman.2012.05.019. [DOI] [Google Scholar]
  • 26.Elliott M, et al. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries. 2007;8:241–268. doi: 10.1111/j.1467-2679.2007.00253.x. [DOI] [Google Scholar]
  • 27.van der Veer HW, Berghahn R, Miller JM, Rijnsdorp AD. Recruitment in flatfish, with special emphasis on North Atlantic species: Progress made by the Flatfish Symposia. ICES Journal of Marine Science. 2000;57:202–215. doi: 10.1006/jmsc.1999.0523. [DOI] [Google Scholar]
  • 28.Clare DS, et al. Biological traits of marine benthic invertebrates in Northwest Europe. Sci Data. 2022;9:339. doi: 10.1038/s41597-022-01442-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Beauchard O, et al. A generic approach to develop a trait-based indicator of trawling-induced disturbance. Marine Ecology Progress Series. 2021;675:35–52. doi: 10.3354/meps13840. [DOI] [Google Scholar]
  • 30.Bijleveld AI, et al. Designing a benthic monitoring programme with multiple conflicting objectives. Methods in Ecology and Evolution. 2012;3:526–536. doi: 10.1111/j.2041-210X.2012.00192.x. [DOI] [Google Scholar]
  • 31.Compton, T. J. et al. SYNOPTIC INTERTIDAL BENTHIC SURVEY, SIBES, accros the Dutch Wadden Sea. Report on data collected from 2008 to 2010. http://rgdoi.net/10.13140/2.1.4295.8405 (2012).
  • 32.Meijer KJ, et al. Characterizing bedforms in shallow seas as an integrative predictor of seafloor stability and the occurrence of macrozoobenthic species. Remote Sens Ecol Conserv rse2.312. 2022 doi: 10.1002/rse2.312. [DOI] [Google Scholar]
  • 33.Nimmo DG, Mac Nally R, Cunningham SC, Haslem A, Bennett AF. Vive la résistance: reviving resistance for 21st century conservation. Trends in Ecology & Evolution. 2015;30:516–523. doi: 10.1016/j.tree.2015.07.008. [DOI] [PubMed] [Google Scholar]
  • 34.Soetaert, K. & Beauchard, O. R-package Btrait: Working with Biological density, taxonomy, and trait composition data. Data product created under the European Marine Observation Data Network (EMODnet) Biology Phase IV. (2023).
  • 35.Marine Species Traits Editorial Board. Marine Species Traits. Accessed at http://www.marinespecies.org/traits on 2023-08-23. 10.14284/580 (2023).
  • 36.Lotze HK. Radical changes in the Wadden Sea fauna and flora over the last 2,000 years. Helgol Mar Res. 2005;59:71–83. doi: 10.1007/s10152-004-0208-0. [DOI] [Google Scholar]
  • 37.Reise K. Coast of change: habitat loss and transformations in the Wadden Sea. Helgol Mar Res. 2005;59:9–21. doi: 10.1007/s10152-004-0202-6. [DOI] [Google Scholar]
  • 38.Reise, K. et al. The Wadden Sea - A Universally Outstanding Tidal Wetland. 7–24 (2010).
  • 39.Eriksson BK, et al. Major Changes in the Ecology of the Wadden Sea: Human Impacts, Ecosystem Engineering and Sediment Dynamics. Ecosystems. 2010;13:752–764. doi: 10.1007/s10021-010-9352-3. [DOI] [Google Scholar]
  • 40.Ryland JS, Porter JS. The identification, distribution and biology of encrusting species of Alcyonidium (Bryozoa: Ctenostomatida) around the coasts of Ireland. Biology and Environment. 2006;106:19–33. doi: 10.3318/BIOE.2006.106.1.19. [DOI] [Google Scholar]
  • 41.Kristensen E, et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 2012;446:285–302. doi: 10.3354/meps09506. [DOI] [Google Scholar]
  • 42.Beermann J, Franke H-D. A supplement to the amphipod (Crustacea) species inventory of Helgoland (German Bight, North Sea): indication of rapid recent change. Mar. Biodivers. Rec. 2011;4:e41. doi: 10.1017/S1755267211000388. [DOI] [Google Scholar]
  • 43.Costello MJ, Myers AA. Breeding periodicity and sex ratios in epifaunal marine amphipoda in Lough Hyne, Ireland. Estuarine, Coastal and Shelf Science. 1989;29:409–419. doi: 10.1016/0272-7714(89)90076-0. [DOI] [Google Scholar]
  • 44.Gibbs PE. The Population cycle of the bivalve Abra tenuis and its mode of reproduction. J. Mar. Biol. Ass. 1984;64:791–800. doi: 10.1017/S0025315400047238. [DOI] [Google Scholar]
  • 45.Holmes S, Dekker R, Williams I. Population dynamics and genetic differentiation in the bivalve mollusc Abra tenuis: aplanic dispersal. Mar. Ecol. Prog. Ser. 2004;268:131–140. doi: 10.3354/meps268131. [DOI] [Google Scholar]
  • 46.Dekker R, Beukema JJ. Relations of summer and winter temperatures with dynamics and growth of two bivalves, Tellina tenuis and Abra tenuis, on the northern edge of their intertidal distribution. Journal of Sea Research. 1999;42:207–220. doi: 10.1016/S1385-1101(99)00026-X. [DOI] [Google Scholar]
  • 47.Ashworth JH, Annandale N. Observations on Some Aged Specimens of Sagartia Troglodytes, and on the Duration of Life in Cœlenterates. Proc. R. Soc. Edinb. 1906;25:295–308. doi: 10.1017/S0370164600008506. [DOI] [Google Scholar]
  • 48.Spaulding JG. Embryonic and Larval Development in Sea Anemones (Anthozoa: Actiniaria) Am Zool. 1974;14:511–520. doi: 10.1093/icb/14.2.511. [DOI] [Google Scholar]
  • 49.Cadman PS, Ryland JS. Redescription of Alcyonidium mytili Dalyell, 1848 (Bryozoa: Ctenostomatida) Zoological Journal of the Linnean Society. 1996;116:437–450. doi: 10.1111/j.1096-3642.1996.tb00132.x. [DOI] [Google Scholar]
  • 50.Sainte-Marie B. & Brunei, P. Suprabenthic gradients of swimming activity by cold-water gammaridean amphipod Crustacea over a muddy shelf in the Gulf of Saint Lawrence. Mar. Ecol. Prog. Ser. 1985;23:57–69. doi: 10.3354/meps023057. [DOI] [Google Scholar]
  • 51.Barnard JL. The families and genera of marine gammaridean Amphipoda. Bull.U.S.Natl.Mus. 1969;271:1–535. doi: 10.5479/si.03629236.258.1. [DOI] [Google Scholar]
  • 52.Grebmeier JM, Moore SE, Overland JE, Frey KE, Gradinger R. Biological Response to Recent Pacific Arctic Sea Ice Retreats. Eos, Transactions American Geophysical Union. 2010;91:161–162. doi: 10.1029/2010EO180001. [DOI] [Google Scholar]
  • 53.van Praët M, Rice AL, Thurston MH. Reproduction in two deep-sea anemones (Actiniaria); Phelliactis hertwigi and P. robusta. Progress in Oceanography. 1990;24:207–222. doi: 10.1016/0079-6611(90)90031-V. [DOI] [Google Scholar]
  • 54.Sanamyan NP, Sanamyan KE, Grebelnyi SD. Two poorly known Arctic sea anemones, Cactosoma abyssorum and Halcampa arctica (Actiniaria: Halcampidae) Invertzool. 2016;13:1–14. doi: 10.15298/invertzool.13.1.01. [DOI] [Google Scholar]
  • 55.Faasse M, van Moorsel G, Tempelman D. Moss animals of the dutch part of the North Sea and coastal waters of the Netherlands (Bryozoa) Nederlandse Faunistische Mededelingen. 2013;41:1–14. [Google Scholar]
  • 56.Roy V, et al. Benthic faunal assimilation pathways and depth-related changes in food-web structure across the Canadian Arctic. Deep Sea Research Part I: Oceanographic Research Papers. 2015;102:55–71. doi: 10.1016/j.dsr.2015.04.009. [DOI] [Google Scholar]
  • 57.Pardo EV, Dauer DM. Particle size selection in individuals from epifaunal versus infaunal populations of the nereidid polychaete Neanthes succinea(Polychaeta: Nereididae) Hydrobiologia. 2003;496:355–360. doi: 10.1023/A:1026181823273. [DOI] [Google Scholar]
  • 58.Commito J, Ambrose W. Multiple trophic levels in soft-bottom communities. Mar. Ecol. Prog. Ser. 1985;26:289–293. doi: 10.3354/meps026289. [DOI] [Google Scholar]
  • 59.Neuhoff H-G. Influence of Temperature and Salinity on Food Conversion and Growth of Different Nereis Species (Polychaeta, Annelida) Mar. Ecol. Prog. Ser. 1979;1:255–262. doi: 10.3354/meps001255. [DOI] [Google Scholar]
  • 60.Kuhl DL, Oglesby LC. Reproduction And Survival Of The Pileworm Nereis Succinea In Higher Salton Sea Salinities. The Biological Bulletin. 1979;157:153–165. doi: 10.2307/1541084. [DOI] [Google Scholar]
  • 61.Reish DJ. The Life History of the Polychaetous Annelid Neanthes caudata (delle Chiaje), Including a Summary of Development in the Family Nereidae. PACIFIC SCIENCE. 1957;11:216–228. [Google Scholar]
  • 62.Watson GJ, Bentley MG, Gaudron SM, Hardege JD. The role of chemical signals in the spawning induction of polychaete worms and other marine invertebrates. Journal of Experimental Marine Biology and Ecology. 2003;294:169–187. doi: 10.1016/S0022-0981(03)00264-8. [DOI] [Google Scholar]
  • 63.Pettibone MH. Marine polychaete worms of the New England region. I. Aphroditidae through Trochochaetidae. Bulletin of the United States National Museum. 1963;83:1–356. doi: 10.5479/si.03629236.227.1. [DOI] [Google Scholar]
  • 64.Haire, M. & Krome, E. C. Perspectives on the Chesapeake Bay, 1990. 79 (1990).
  • 65.Hertweck G. Burrows of the polychaete Nereis virens. Sars. Senckenberg. Marit. 1986;17:319–331. [Google Scholar]
  • 66.Fauchald K, Jumars PA. The diet of worms: A study of polychaete feeding guilds. Oceanography and Marine Biology Annual Review. 1979;17:193–284. [Google Scholar]
  • 67.Wells GP. The Movements of the Proboscis in Glycera Dibranchiata Ehlers. Journal of Experimental Biology. 1937;14:290–301. doi: 10.1242/jeb.14.3.290. [DOI] [Google Scholar]
  • 68.Bass NR, Brafield AE. The Life-Cycle of the Polychaete. Nereis Virens. J. Mar. Biol. Ass. 1972;52:701–726. doi: 10.1017/S0025315400021664. [DOI] [Google Scholar]
  • 69.Williams ME, Bentley MG. Fertilization Success in Marine Invertebrates: The Influence of Gamete Age. The Biological Bulletin. 2002;202:34–42. doi: 10.2307/1543220. [DOI] [PubMed] [Google Scholar]
  • 70.Lewis C, Olive PJW, Bentley MG, Watson G. Does seasonal reproduction occur at the optimal time for fertilization in the polychaetes Arenicola marina L. and Nereis virens Sars? Invertebrate Reproduction & Development. 2002;41:61–71. doi: 10.1080/07924259.2002.9652736. [DOI] [Google Scholar]
  • 71.Price R, Warwick RM. Temporal Variations in Annual Production and Biomass in Estuarine Populations of two Polychaetes, Nephtys Hombergi and Ampharete Acutifrons. J. Mar. Biol. Ass. 1980;60:481–487. doi: 10.1017/S0025315400028496. [DOI] [Google Scholar]
  • 72.Clavier, J. The biological cycle of Ampharete acutifrons (Grube, 1860) (Annelida: Polychaeta). Comptes rendus des seances de l’Academie des Sciences. Serie III. Sciences de la Vie (1984).
  • 73.Arvanitidis C, Koutsoubas D, Dounas C, Eleftheriou A. Annelid fauna of a Mediterranean lagoon (Gialova Lagoon, south-west Greece): community structure in a severely fluctuating environment. J. Mar. Biol. Ass. 1999;79:849–856. doi: 10.1017/S0025315499001010. [DOI] [Google Scholar]
  • 74.Wilson WH. Sexual reproductive modes in polychaetes: Classification and diversity. Bulletin of Marine Science. 1991;48:500–516. [Google Scholar]
  • 75.Blake JA, Arnofsky PL. Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia. 1999;402:57–106. doi: 10.1023/A:1003784324125. [DOI] [Google Scholar]
  • 76.Gibbs PE. A Comparative study of Reproductive Cycles in Four polychaete Species belonging to the Family Cirratulidae. J. Mar. Biol. Ass. 1971;51:745–769. doi: 10.1017/S002531540001794X. [DOI] [Google Scholar]
  • 77.Jumars PA, Dorgan KM, Lindsay SM. Diet of Worms Emended: An Update of Polychaete Feeding Guilds. Annu. Rev. Mar. Sci. 2015;7:497–520. doi: 10.1146/annurev-marine-010814-020007. [DOI] [PubMed] [Google Scholar]
  • 78.Watson G, Cadman P, Paterson L, Bentley M. & Auckland, M. Control of oocyte maturation, sperm activation and spawning in two lugworm species:Arenicola marina and A. defodiens. Mar. Ecol. Prog. Ser. 1998;175:167–176. doi: 10.3354/meps175167. [DOI] [Google Scholar]
  • 79.Cadman PS, Nelson-Smith A. A new species of lugworm: Arenicola defodiens sp. nov. J. Mar. Biol. Ass. 1993;73:213–223. doi: 10.1017/S0025315400032744. [DOI] [Google Scholar]
  • 80.Bowen, S., Goodwin, C., Kipling, D. & Picton, B. Sea squirts and sponges of Britain and Ireland. (Wild nature Press, 2018).
  • 81.Brunetti, R. & Mastrototaro, F. Ascidiacea of the European waters. (Calderini, 2017).
  • 82.Cloney RA. Ascidian Larvae and the Events of Metamorphosis. Amer. Zool. 1982;22:817–826. doi: 10.1093/icb/22.4.817. [DOI] [Google Scholar]
  • 83.Mukai H, Koyama H, Watanabe H. Studies on The Reproduction of Three Species of Perophora (Ascidiacea) The Biological Bulletin. 1983;164:251–266. doi: 10.2307/1541143. [DOI] [Google Scholar]
  • 84.Lehtiniemi M, Nordström H. Feeding differences among common littoral mysids, Neomysis integer, Praunus flexuosus and P. inermis. Hydrobiologia. 2008;614:309–320. doi: 10.1007/s10750-008-9515-9. [DOI] [Google Scholar]
  • 85.Hughes TG. Deposit feeding in Abra tenuis (Bivalvia: Tellinacea) Journal of Zoology. 1973;171:499–512. doi: 10.1111/j.1469-7998.1973.tb02232.x. [DOI] [Google Scholar]
  • 86.Millar RH. The annual growth and reproductive cycle in four ascidians. J. Mar. Biol. Ass. 1952;31:41–61. doi: 10.1017/S0025315400003672. [DOI] [Google Scholar]
  • 87.Shick JM, Taylor WF, Lamb AN. Reproduction and genetic variation in the deposit-feeding sea star Ctenodiscus crispatus. Mar. Biol. 1981;63:51–66. doi: 10.1007/BF00394662. [DOI] [Google Scholar]
  • 88.Dubois S, Orvain F, Marin-Léal J, Ropert M, Lefebvre S. Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes. Mar. Ecol. Prog. Ser. 2007;336:151–160. doi: 10.3354/meps336151. [DOI] [Google Scholar]
  • 89.Crisp DJ, Davies PA. Observations in vivo on the breeding of Elminius modestus grown on glass slides. J. Mar. Biol. Ass. 1955;34:357–380. doi: 10.1017/S0025315400027715. [DOI] [Google Scholar]
  • 90.Gallagher MC, Davenport J, Gregory S, McAllen R, O’Riordan R. The invasive barnacle species, Austrominius modestus: Its status and competition with indigenous barnacles on the Isle of Cumbrae, Scotland. Estuarine, Coastal and Shelf Science. 2015;152:134–141. doi: 10.1016/j.ecss.2014.11.014. [DOI] [Google Scholar]
  • 91.Knight-Jones EW, Duncan Waugh G. On the Larval Development of Elminius Modestus Darwin. J. Mar. Biol. Ass. 1949;28:413–428. doi: 10.1017/S0025315400023304. [DOI] [Google Scholar]
  • 92.Barnes H, Barnes M. The General Biology of Balanus balanus (L.) Da Costa. Oikos. 1954;5:63. doi: 10.2307/3564651. [DOI] [Google Scholar]
  • 93.Crisp DJ. The Planktonic Stages of the Cirripedia Balanus balanoides (L.) and Balanus balanus (L.) from North Temperate Waters. Crustaceana. 1962;3:207–221. doi: 10.1163/156854062X00436. [DOI] [Google Scholar]
  • 94.Clausen C. Microphthalmus ephippiophorus sp.n. (Polychaeta: Hesionidae) and two other Microphthalmus species from the bergen area, western Norway. Sarsia. 1986;71:177–191. doi: 10.1080/00364827.1986.10419689. [DOI] [Google Scholar]
  • 95.Monari S. Phylogeny and Biogeography of Pholadid Bivalve Barnea (Anchomasa) with Considerations on the Phylogeny of Pholadoidea. Acta Palaeontologica Polonica. 2009;54:315–335. doi: 10.4202/app.2008.0068. [DOI] [Google Scholar]
  • 96.Österling M, Pihl L. Effects of filamentous green algal mats on benthic macrofaunal functional feeding groups. Journal of Experimental Marine Biology and Ecology. 2001;263:159–183. doi: 10.1016/S0022-0981(01)00304-5. [DOI] [Google Scholar]
  • 97.Nicolaisen W, Kanneworff E. On the burrowing and feeding habits of the amphipods Bathyporeia pilosa Lindström and Bathyporeia sarsi Watkin. Ophelia. 1969;6:231–250. doi: 10.1080/00785326.1969.10409651. [DOI] [Google Scholar]
  • 98.Eernisse DJ. Reproductive Patterns in Six Species of Lepidochitona (Mollusca: Polyplacophora) from the Pacific Coast of North America. The Biological Bulletin. 1988;174:287–302. doi: 10.2307/1541955. [DOI] [Google Scholar]
  • 99.Just, J. Siphonoecetinae (Corophiidae) 6: A Survey of Phylogeny, Distribution, and Biology. Crustaceana. Supplement 193–208 (1988).
  • 100.Fish JD, Preece GS. The Annual Reproductive Patterns of Bathyporeia Pilosa and Bathyporeia Pelagica [Crustacea: Amphipoda] J. Mar. Biol. Ass. 1970;50:475–488. doi: 10.1017/S0025315400004665. [DOI] [Google Scholar]
  • 101.Watkin EE. The Pelagic Phase in the Life History of the Amphipod Genus. Bathyporeia. J. Mar. Biol. Ass. 1939;23:467–481. doi: 10.1017/S0025315400014028. [DOI] [Google Scholar]
  • 102.Fish JD, Fish S. The veliger larva of Hydrobia ulvae with observations on the veliger of Littorina littorea (Mollusca: Prosobranchia) Journal of Zoology. 1977;182:495–503. doi: 10.1111/j.1469-7998.1977.tb04165.x. [DOI] [Google Scholar]
  • 103.Watling, L. Marine flora and fauna of the Northeastern United States. Crustacea: Cumacea. 697–737, https://repository.library.noaa.gov/view/noaa/3732 (1979).
  • 104.Morys C, Powilleit M, Forster S. Bioturbation in relation to the depth distribution of macrozoobenthos in the southwestern Baltic Sea. Mar. Ecol. Prog. Ser. 2017;579:19–36. doi: 10.3354/meps12236. [DOI] [Google Scholar]
  • 105.Renz JR, et al. Community bioirrigation potential (BIPc), an index to quantify the potential for solute exchange at the sediment-water interface. Marine Environmental Research. 2018;141:214–224. doi: 10.1016/j.marenvres.2018.09.013. [DOI] [PubMed] [Google Scholar]
  • 106.Haig JA, et al. Reproductive traits and factors affecting the size at maturity of Cancer pagurus across Northern Europe. ICES J. Mar. Sci. 2016;73:2572–2585. doi: 10.1093/icesjms/fsw081. [DOI] [Google Scholar]
  • 107.Weiss M, et al. Influence of temperature on the larval development of the edible crab, Cancer pagurus. J. Mar. Biol. Ass. 2009;89:753–759. doi: 10.1017/S0025315409003269. [DOI] [Google Scholar]
  • 108.Türkay M. On the occurrence of Diogenes pugilator in the German Bight (Crustacea: Decapoda Diogenidae) Helgol Mar Res. 2014;68:281–287. doi: 10.1007/s10152-014-0388-1. [DOI] [Google Scholar]
  • 109.Guerra-García JM. Re-descriptions of Caprella linearis (Linnaeus, 1767) and C. septentrionalis Kröyer, 1838 (Crustacea: Amphipoda: Caprellidea) from Scotland, with an ontogenetic comparison between the species and a study of the clinging behaviour. Sarsia. 2002;87:216–235. doi: 10.1080/00364820260294851. [DOI] [Google Scholar]
  • 110.Bochert R, Bick A. Reproduction and larval development of Marenzelleria viridis (Polychaeta: Spionidae) Marine Biology. 1995;123:763–773. doi: 10.1007/BF00349119. [DOI] [Google Scholar]
  • 111.Moreira J, Gestoso L, Troncoso JS. Diversity and temporal variation of peracarid fauna (Crustacea: Peracarida) in the shallow subtidal of a sandy beach: Playa América (Galicia, NW Spain) Marine Ecology. 2008;29:12–18. doi: 10.1111/j.1439-0485.2007.00195.x. [DOI] [Google Scholar]
  • 112.Baeteman C, Beets DJ, Strydonck MV. Tidal crevasse splays as the cause of rapid changes in the rate of aggradation in the Holocene tidal deposits of the Belgian Coastal Plain. Quaternary International. 1999;56:3–13. doi: 10.1016/S1040-6182(98)00012-3. [DOI] [Google Scholar]
  • 113.Yankson K. Precocious sexual maturity in Cerastoderma glaucum (Bruguiére) reared in the laboratory. Journal of Molluscan Studies. 1986;52:79–80. doi: 10.1093/mollus/52.1.79. [DOI] [Google Scholar]
  • 114.Kandeel KE, Mohammed SZ, Mostafa AM, Abd-Alla ME. Reproductive biology of the cockle Cerastoderma glaucum (Bivalvia:Cardiidae) from Lake Qarun, Egypt. The Egyptian Journal of Aquatic Research. 2013;39:249–260. doi: 10.1016/j.ejar.2013.12.003. [DOI] [Google Scholar]
  • 115.Durante KM, Sebens KP. Reproductive ecology of the ascidians Molgula Citrina Alder & Hancock 1848 and Aplidium Glabrum (verrill 1871) from the gulf of maine, USA. Ophelia. 1994;39:1–21. doi: 10.1080/00785326.1994.10429898. [DOI] [Google Scholar]
  • 116.George JD. On Some Environmental Factors Affecting the Distribution of Cirriformia Tentaculata [Polychaeta] at Hamble. J. Mar. Biol. Ass. 1964;44:373–388. doi: 10.1017/S0025315400024899. [DOI] [Google Scholar]
  • 117.Petersen ME. Reproduction and development in Cirratulidae (Annelida: Polychaeta) Hydrobiologia. 1999;402:107–128. doi: 10.1023/A:1003736408195. [DOI] [Google Scholar]
  • 118.Brunetti R, Beghi L, Marin MG, Bressan M. Survival and growth of molgula socialis alder, 1863 at different temperature-salinity combinations. Vue Milieu. 1985;35:43–47. [Google Scholar]
  • 119.Richter HP, Götting KJ. Oogenese und Sexualität der KäferschneckeLepidochitona cinereus (Mollusca, Polyplacophora. Helgolander Wiss. Meeresunters. 1974;26:42–62. doi: 10.1007/BF01613304. [DOI] [Google Scholar]
  • 120.Lucas CH, Williams DW, Wiliams JA, Sheader M. Seasonal dynamics and production of the hydromedusan Clytia hemisphaerica (Hydromedusa: Leptomedusa) in Southampton water. Estuaries. 1995;18:362–372. doi: 10.2307/1352318. [DOI] [Google Scholar]
  • 121.Houliston E, Momose T, Manuel M. Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends in Genetics. 2010;26:159–167. doi: 10.1016/j.tig.2010.01.008. [DOI] [PubMed] [Google Scholar]
  • 122.Curtis MA. Life cycles and population dynamics of marine benthic polychaetes from the Disko bay area of West Greenland. Ophelia. 1977;16:9–58. doi: 10.1080/00785326.1977.10425460. [DOI] [Google Scholar]
  • 123.Limia J, Raffaelli D. The effects of burrowing by the amphipod Corophium volutator on the ecology of intertidal sediments. J. Mar. Biol. Ass. 1997;77:409–423. doi: 10.1017/S0025315400071769. [DOI] [Google Scholar]
  • 124.Fish JD, Mills A. The reproductive biology of Corophium volutator and C. arenarium (Crustacea: Amphipoda) J. Mar. Biol. Ass. 1979;59:355–368. doi: 10.1017/S002531540004265X. [DOI] [Google Scholar]
  • 125.Collin R. Sex, Size, and Position: A Test of Models Predicting Size at Sex Change in the Protandrous Gastropod Crepidula fornicata. The American Naturalist. 1995;146:815–831. doi: 10.1086/285826. [DOI] [Google Scholar]
  • 126.Thain JE. Effects of mercury on the prosobranch mollusc Crepidula fornicata: Acute lethal toxicity and effects on growth and reproduction of chronic exposure. Marine Environmental Research. 1984;12:285–309. doi: 10.1016/0141-1136(84)90055-2. [DOI] [Google Scholar]
  • 127.Corey S. Comparative fecundity and reproductive strategies in seventeen species of the Cumacea (Crustacea: Peracarida) Mar. Biol. 1981;62:65–72. doi: 10.1007/BF00396952. [DOI] [Google Scholar]
  • 128.Luckenbach MW. Effects of adult infauna on new recruits: implications for the role of biogenic refuges. Journal of Experimental Marine Biology and Ecology. 1987;105:197–206. doi: 10.1016/0022-0981(87)90172-9. [DOI] [Google Scholar]
  • 129.Corbera J, San Vicente C, Sorbe J-C. Small-scale distribution, life cycle and secondary production of Cumopsis goodsir in Creixell Beach (western Mediterranean) J. Mar. Biol. Ass. 2000;80:271–282. doi: 10.1017/S0025315400001843. [DOI] [Google Scholar]
  • 130.Corey S. The comparative life histories of three Cumacea (Crustacea): Cumopsis goodsiri (Van Beneden), Iphinöe trispinosa (Goodsir), and Pseudocuma longicornis (Bate) Can. J. Zool. 1969;47:695–704. doi: 10.1139/z69-116. [DOI] [Google Scholar]
  • 131.Manjón-Cabeza ME, García-Raso JE. population structure and growth of the hermit crab diogenes pugilator (decapoda: anomura: diogenidae) from the northeastern atlantic. Journal of Crustacean Biology. 1998;18:753–762. doi: 10.2307/1549152. [DOI] [Google Scholar]
  • 132.Manjón-Cabeza ME, García Raso JE. Reproductive aspects of females of the hermit crab Diogenes pugilator (Crustacea: Decapoda: Anomura) from southern Spain. J. Mar. Biol. Ass. 2000;80:85–93. doi: 10.1017/S0025315499001599. [DOI] [Google Scholar]
  • 133.Lu JK, Chen TT, Allen SK, Matsubara T, Burns JC. Production of transgenic dwarf surfclams, Mulinia lateralis, with pantropic retroviral vectors. Proc Natl Acad Sci USA. 1996;93:3482–3486. doi: 10.1073/pnas.93.8.3482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Sivadas SK, Ingole BS, Fernandes CEG. Environmental Gradient Favours Functionally Diverse Macrobenthic Community in a Placer Rich Tropical Bay. The Scientific World Journal. 2013;2013:1–12. doi: 10.1155/2013/750580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Harley MB. Occurrence of a Filter-feeding Mechanism in the Polychæte Nereis diversicolor. Nature. 1950;165:734–735. doi: 10.1038/165734b0. [DOI] [PubMed] [Google Scholar]
  • 136.Kristensen E. Life Cycle, Growth and Production in Estuarine Populations of the Polychaetes Nereis virens and N. diversicolor. Holarctic Ecology. 1984;7:249–256. [Google Scholar]
  • 137.Dierschke V, Kube J, Rippe H. Feeding ecology of dunlins Calidris alpina staging in the southern Baltic Sea, 2. Spatial and temporal variations in the harvestable fraction of their favourite prey Hediste diversicolor. Journal of Sea Research. 1999;42:65–82. doi: 10.1016/S1385-1101(99)00016-7. [DOI] [Google Scholar]
  • 138.McHugh D, Fong PP. Do Life History Traits Account for Diversity of Polychaete Annelids? Invertebrate Biology. 2002;121:325–338. doi: 10.1111/j.1744-7410.2002.tb00133.x. [DOI] [Google Scholar]
  • 139.Shumway SE, Newell RC. Energy resource allocation in Mulinia lateralis (Say), an opportunistic bivalve from shallow water sediments. Ophelia. 1984;23:101–118. doi: 10.1080/00785326.1984.10426607. [DOI] [Google Scholar]
  • 140.Rhodes, E. W., Calabrese, A., Cable, W. D. & Landers, W. S. The Development of Methods for Rearing the Coot Clam, Mulinia Lateralis, and Three Species of Coastal Bivalves in the Laboratory. in Culture of Marine Invertebrate Animals (eds. Smith, W. L. & Chanley, M. H.) 273–282. 10.1007/978-1-4615-8714-9_18 (Springer US, 1975).
  • 141.Luckenbach M. Settlement and early post-settlement survival in the recruitment of Mulinia lateralis (Bivalvia) Mar. Ecol. Prog. Ser. 1984;17:245–250. doi: 10.3354/meps017245. [DOI] [Google Scholar]
  • 142.Cadée GC. Sediment reworking by the polychaete heteromastus filiformis on a tidal flat in the Dutch Wadden Sea. Netherlands Journal of Sea Research. 1979;13:441–456. doi: 10.1016/0077-7579(79)90017-6. [DOI] [Google Scholar]
  • 143.Dales RP. Observations on the structure and life history of Autolytus prolifer (O. F. Müller) J. Mar. Biol. Ass. 1951;30:119–128. doi: 10.1017/S0025315400012625. [DOI] [Google Scholar]
  • 144.Nasi F, et al. Structural and functional response of coastal macrofaunal community to terrigenous input from the Po River (northern Adriatic Sea) Estuarine, Coastal and Shelf Science. 2020;235:106548. doi: 10.1016/j.ecss.2019.106548. [DOI] [Google Scholar]
  • 145.Quintana CO, Tang M, Kristensen E. Simultaneous study of particle reworking, irrigation transport and reaction rates in sediment bioturbated by the polychaetes Heteromastus and Marenzelleria. Journal of Experimental Marine Biology and Ecology. 2007;352:392–406. doi: 10.1016/j.jembe.2007.08.015. [DOI] [Google Scholar]
  • 146.Gillet P, Gorman E. Population structure and secondary production of Heteromastus filiformis (Polychaeta: Capitellidae) in the Loire estuary, France. J. Mar. Biol. Ass. 2002;82:395–402. doi: 10.1017/S0025315402005635. [DOI] [Google Scholar]
  • 147.Wolff WJ. The estuary as a habitat an analysis of data on the soft-bottom Macrofauna of the Estuarine area of the rivers rhine, Meuse, and Scheldt. Zoologische Verhandelingen. 1973;126:1–242. [Google Scholar]
  • 148.O’Foighil D, McGrath D, Conneely ME, Keegan BF, Costelloe M. Population dynamics and reproduction of Mysella bidentata (Bivalvia: Galeommatacea) in Galway Bay, Irish west coast. Marine Biology. 1984;81:283–291. doi: 10.1007/BF00393222. [DOI] [Google Scholar]
  • 149.O’Brien K, Keegan BF. Age-Related Reproductive Biology of the Bivalve Mysella Bidentata (Montagu) (Bivalvia: Galeommatacea) in Kinsale Harbour (South Coast of Ireland) The Irish Naturalists’ Journal. 2006;28:284–299. [Google Scholar]
  • 150.Norkko A, Villnäs A, Norkko J, Valanko S, Pilditch C. Size matters: implications of the loss of large individuals for ecosystem function. Sci Rep. 2013;3:2646. doi: 10.1038/srep02646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Kristensen E, Hansen T, Delefosse M, Banta G, Quintana C. Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on benthic metabolism and solute transport in sandy coastal sediment. Mar. Ecol. Prog. Ser. 2011;425:125–139. doi: 10.3354/meps09007. [DOI] [Google Scholar]
  • 152.Dauer DM, Maybury CA, Ewing RM. Feeding behavior and general ecology of several spionid polychaetes from the chesapeake bay. Journal of Experimental Marine Biology and Ecology. 1981;54:21–38. doi: 10.1016/0022-0981(81)90100-3. [DOI] [Google Scholar]
  • 153.Zettler ML. Population dynamics, growth and production of the neozoon Marenzelleria cf. viridis (Verrill, 1873) (Polychaeta: Spionidae) in a coastal water of the southern Baltic Sea. Aquatic Ecology. 1997;31:177–186. doi: 10.1023/A:1009903521182. [DOI] [Google Scholar]
  • 154.Bochert R. Marenzelleria viridis (Polychaeta: Spionidae): a review of its reproduction. Aquatic Ecology. 1997;31:163–175. doi: 10.1023/A:1009951404343. [DOI] [Google Scholar]
  • 155.Bochert R, Fritzsche D, Burckhardt R. Influence of salinity and temperature on growth and survival of the planktonic larvae of Marenzelleria viridis (Polychaeta, Spionidae) J Plankton Res. 1996;18:1239–1251. doi: 10.1093/plankt/18.7.1239. [DOI] [Google Scholar]
  • 156.Bochert, R., Bick, A., Zettler, M. & Arndt, E.-A. Marenzelleria viridis (Verrill, 1873) (Polychaeta: Spionidae), an Invader in the Benthic Community in Baltic Coastal Inlets - Investigation of Reproduction. Proceedings of the 13th Symposium of the Baltic Marine Biologists 131–139 (1996).
  • 157.Giangrande A, Fraschetti SL. Cycle, Growth and Secondary Production in a Brackish-Water Population of the Polychaete Notomastus latericeus (Capitellidae) in the Mediterranean Sea. Marine Ecology. 1993;14:313–327. doi: 10.1111/j.1439-0485.1993.tb00003.x. [DOI] [Google Scholar]
  • 158.Mees J, Abdulkerim Z, Hamerlynck O. Life history, growth and production of Neomysis integer in the Westerschelde estuary (SW Netherlands) Mar. Ecol. Prog. Ser. 1994;109:43–57. doi: 10.3354/meps109043. [DOI] [Google Scholar]
  • 159.Thrush SF, et al. Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc. R. Soc. B. 2017;284:20162861. doi: 10.1098/rspb.2016.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Lesutienė J, Gasiūnaitė Z, Strikaitytė R, Žilienė R. Trophic position and basal energy sources of the invasive prawn Palaemon elegans in the exposed littoral of the SE Baltic Sea. AI. 2014;9:37–45. doi: 10.3391/ai.2014.9.1.03. [DOI] [Google Scholar]
  • 161.Bilgin S, Ozen O, Samsun O. Sexual seasonal growth variation and reproduction biology of the rock pool prawn, Palaemon elegans (Decapoda: Palaemonidae) in the southern Black Sea. Sci. Mar. 2009;73:239–247. doi: 10.3989/scimar.2009.73n2239. [DOI] [Google Scholar]
  • 162.BİLGİN S, Samsun O. Fecundity and Egg Size of Three Shrimp Species, Crangon crangon, Palaemon adspersus, and Palaemon elegans (Crustacea: Decapoda: Caridea), off Sinop Peninsula (Turkey) in the Black Sea. Turkish Journal of Zoology. 2006;30:413–421. [Google Scholar]
  • 163.Anger K, Anger V, Hagmeier E. Laboratory studies on larval growth ofPolydora ligni, Polydora ciliata, andPygospio elegans (Polychaeta, Spionidae) Helgolander Meeresunters. 1986;40:377–395. doi: 10.1007/BF01983819. [DOI] [Google Scholar]
  • 164.Sola JC. Reproduction, population dynamics, growth and production ofScrobicularia plana da costa (pelecypoda) in the Bidasoa estuary, Spain. Netherlands Journal of Aquatic Ecology. 1997;30:283–296. doi: 10.1007/BF02085872. [DOI] [Google Scholar]
  • 165.Langston WJ, Burt GR, Chesman BS. Feminisation of male clams Scrobicularia plana from estuaries in Southwest UK and its induction by endocrine-disrupting chemicals. Mar. Ecol. Prog. Ser. 2007;333:173–184. doi: 10.3354/meps333173. [DOI] [Google Scholar]
  • 166.Ruiz JM, Bryan GW, Wigham GD, Gibbs PE. Effects of tributyltin (TBT) exposure on the reproduction and embryonic development of the bivalve Scrobicularia plana. Marine Environmental Research. 1995;40:363–379. doi: 10.1016/0141-1136(94)00154-H. [DOI] [Google Scholar]
  • 167.Santos S, Cardoso JFMF, Carvalho C, Luttikhuizen PC, van der Veer HW. Seasonal variability in somatic and reproductive investment of the bivalve Scrobicularia plana (da Costa, 1778) along a latitudinal gradient. Estuarine, Coastal and Shelf Science. 2011;92:19–26. doi: 10.1016/j.ecss.2010.12.005. [DOI] [Google Scholar]
  • 168.Yonge CM. Cleansing Mechanisms and the Function of the Fourth Pallial Aperture in Spisula Subtruncata (Da Costa) and Lutraria Lutraria (L.) J. Mar. Biol. Ass. 1948;27:585–596. doi: 10.1017/S0025315400056046. [DOI] [Google Scholar]
  • 169.Kiørboe T, Møhlenberg F. Particle Selection in Suspension-Feeding Bivalves. Mar. Ecol. Prog. Ser. 1981;5:291–296. doi: 10.3354/meps005291. [DOI] [Google Scholar]
  • 170.Fraschetti S, Covazzi A, Chiantore M, Albertelli G. Life-history traits of the bivalve Spisula subtruncata (da Costa) in the Ligurian Sea (North-Western Mediterranean): The contribution of newly settled juveniles. Scientia Marina. 1997;61:25–32. [Google Scholar]
  • 171.Janas U, Barańska A. What is the diet of Palaemon elegans Rathke, 1837 (Crustacea, Decapoda), a non-indigenous species in the Gulf of Gdańsk (Southern Baltic Sea)? Oceanologia. 2008;50:221–237. [Google Scholar]
  • 172.Lackschewitz D, Reise K. Macrofauna on flood delta shoals in the Wadden Sea with an underground association between the lugworm Arenicola marina and the amphipod Urothoe poseidonis. Helgoländer Meeresunters. 1998;52:147–158. doi: 10.1007/BF02908744. [DOI] [Google Scholar]
  • 173.Cardoso JFMF, Witte JIJ, van der Veer HW. Growth and reproduction of the bivalve Spisula subtruncata (da Costa) in Dutch coastal waters. Journal of Sea Research. 2007;57:316–324. doi: 10.1016/j.seares.2006.12.002. [DOI] [Google Scholar]
  • 174.Wildish DJ, Peer D. Tidal Current Speed and Production of Benthic Macrofauna in the Lower Bay of Fundy. Can. J. Fish. Aquat. Sci. 1983;40:s309–s321. doi: 10.1139/f83-292. [DOI] [Google Scholar]
  • 175.Lee C-G, Huettel M, Hong J-S, Reise K. Carrion-feeding on the sediment surface at nocturnal low tides by the polychaete Phyllodoce mucosa. Marine Biology. 2004;145:575–583. doi: 10.1007/s00227-004-1334-6. [DOI] [Google Scholar]
  • 176.Sach G. Zur Fortpflanzung des Polychaeten Anaitides mucosa. Mar. Biol. 1975;31:157–160. doi: 10.1007/BF00391627. [DOI] [Google Scholar]
  • 177.Ghodrati Shojaei, M., Gutow, L., Dannheim, J., Pehlke, H. & Brey, T. Functional Diversity and Traits Assembly Patterns of Benthic Macrofaunal Communities in the Southern North Sea. in Towards an Interdisciplinary Approach in Earth System Science: Advances of a Helmholtz Graduate Research School (eds. Lohmann, G. et al.) 183–195, 10.1007/978-3-319-13865-7_20 (Springer International Publishing, 2015).
  • 178.Robertson AI, Lucas JS. Food choice, feeding rates, and the turnover of macrophyte biomass by a surf-zone inhabiting amphipod. Journal of Experimental Marine Biology and Ecology. 1983;72:99–124. doi: 10.1016/0022-0981(83)90138-7. [DOI] [Google Scholar]
  • 179.Cházaro-Olvera S, García-Delgado X, Winfield I, Ortiz M. A Population Study of the Amphipod Nototropis Minikoi (gammaridea, Atylidae) in the Sian Ka’an Biosphere Reserve, Quintana Roo, Mexico. Crustaceana. 2017;90:337–348. doi: 10.1163/15685403-00003655. [DOI] [Google Scholar]
  • 180.Cattrijsse A, Mees J, Hamerlynck O. The hyperbenthic Amphipoda and Isopoda of the Voordelta and the Westerschelde estuary. CAHIERS DE BIOLOGIE MARINE. 1993;34:187–200. [Google Scholar]
  • 181.De Smet B, et al. Biogenic reefs affect multiple components of intertidal soft-bottom benthic assemblages: the Lanice conchilega case study. Estuarine, Coastal and Shelf Science. 2015;152:44–55. doi: 10.1016/j.ecss.2014.11.002. [DOI] [Google Scholar]
  • 182.Obenat S, Spivak E, Garrido L. Life history and reproductive biology of the invasive amphipod Melita palmata (Amphipoda: Melitidae) in the Mar Chiquita coastal lagoon, Argentina. J. Mar. Biol. Ass. 2006;86:1381–1387. doi: 10.1017/S002531540601441X. [DOI] [Google Scholar]
  • 183.Krapp-Schickel T, Sket B. Melita mirzajanii n. sp. (Crustacea: Amphipoda: Melitidae), a puzzling new member of the Caspian fauna. Zootaxa. 2015;3948:248. doi: 10.11646/zootaxa.3948.2.6. [DOI] [PubMed] [Google Scholar]
  • 184.Marchini A, Caronni S, Occhipinti-Ambrogi A. Size variations of the amphipod crustacean Melita palmata in two Adriatic lagoons: Goro and Lesina. Transitional Waters Bulletin. 2008;2:1–12. [Google Scholar]
  • 185.Bossanyi J. A Preliminary Survey of the Small Natant Fauna in the Vicinity of the Sea Floor off Blyth, Northumberland. The Journal of Animal Ecology. 1957;26:353. doi: 10.2307/1752. [DOI] [Google Scholar]
  • 186.Migotto AE, Marques AC, Flynn MN. Seasonal recruitment of hydroids (Cnidaria) on experimental panels in the São Sebastião Channel, southeastern Brazil. Bulletin of Marine Science. 2001;68:287–298. [Google Scholar]
  • 187.Sato-Okoshi W, Sugawara Y, Nomura T. Reproduction of the boring polychaete Polydora variegata inhabiting scallops in Abashiri Bay, North Japan. Mar. Biol. 1990;104:61–66. doi: 10.1007/BF01313158. [DOI] [Google Scholar]
  • 188.Radashevsky VI. On adult and larval morphology of Polydora cornuta Bosc, 1802 (Annelida: Spionidae) Zootaxa. 2005;1064:1. doi: 10.11646/zootaxa.1064.1.1. [DOI] [Google Scholar]
  • 189.Dorsett DA. The Reproduction and Maintenance of Polydora Ciliata (Johnst.) at Whitstable. J. Mar. Biol. Ass. 1961;41:383–396. doi: 10.1017/S0025315400023985. [DOI] [Google Scholar]
  • 190.Dorsett DA. The behaviour of polydora ciliata (Johnst.). Tube-building and burrowing. J. Mar. Biol. Ass. 1961;41:577–590. doi: 10.1017/S0025315400016167. [DOI] [Google Scholar]
  • 191.Carson H, Hentschel B. Estimating the dispersal potential of polychaete species in the Southern California Bight: implications for designing marine reserves. Mar. Ecol. Prog. Ser. 2006;316:105–113. doi: 10.3354/meps316105. [DOI] [Google Scholar]
  • 192.Huxham M, Raffaelli D, Pike AW. The effect of larval trematodes on the growth and burrowing behaviour of Hydrobia ulvae (gastropoda:prosobranchiata) in the Ythan estuary, north-east Scotland. Journal of Experimental Marine Biology and Ecology. 1995;185:1–17. doi: 10.1016/0022-0981(94)00119-X. [DOI] [Google Scholar]
  • 193.Fish JD, Fish S. The Breeding Cycle and Growth of Hydrobia Ulvae in the Dovey Estuary. J. Mar. Biol. Ass. 1974;54:685–697. doi: 10.1017/S0025315400022852. [DOI] [Google Scholar]
  • 194.Pilkington MG. The veliger stage of Hydrobia ulvae (Pennant) Journal of Molluscan Studies. 1971;39:281–287. [Google Scholar]
  • 195.Mendonça V, Vinagre C, Cabral H, Silva ACF. Habitat use of inter-tidal chitons - role of colour polymorphism. Mar Ecol. 2015;36:1098–1106. doi: 10.1111/maec.12205. [DOI] [Google Scholar]
  • 196.Sirenko B. Relict settlement of the chiton Lepidochitona cinerea (Mollusca, Polyplacophora) in northern Norway. Arch. Fish. Mar. Res. 1998;46:139–149. [Google Scholar]
  • 197.Baxter IM, Jones AM. Growth and population structure of Lepidochitona cinereus (Mollusca: Polyplacophora) infected with Minchinia chitonis (Protozoa: Sporozoa) at Easthaven, Scotland. Mar. Biol. 1978;46:305–313. doi: 10.1007/BF00391401. [DOI] [Google Scholar]
  • 198.Rodhouse PG, Roden CM, Hensey MP, Ryan TH. Resource allocation in Mytilus edulis on the shore and in suspended culture. Mar. Biol. 1984;84:27–34. doi: 10.1007/BF00394523. [DOI] [Google Scholar]
  • 199.Olivier M, Desrosiers G, Vincent B. Variations in growth and mortality of juveniles of the phyllodocid Eteone longa (Fabricius) on a tidal flat. Can. J. Zool. 1992;70:663–669. doi: 10.1139/z92-099. [DOI] [Google Scholar]
  • 200.Smith ST. The ecology and life history of retusa obtusa (montagu) (gastropoda, opisthobranchia) Can. J. Zool. 1967;45:397–405. doi: 10.1139/z67-051. [DOI] [Google Scholar]
  • 201.Smith ST. The development of retusa obtusa (montagu) (gastropoda, opisthobranchia) Can. J. Zool. 1967;45:737–764. doi: 10.1139/z67-086. [DOI] [Google Scholar]
  • 202.Berry AJ. Annual cycle in Retusa obtusa (Montagu) (Gastropoda, Opisthobranchia) of reproduction, growth and predation upon Hydrobia ulvae (Pennant) Journal of Experimental Marine Biology and Ecology. 1988;117:197–209. doi: 10.1016/0022-0981(88)90057-3. [DOI] [Google Scholar]
  • 203.Costa FO, Costa MH. Review of the ecology of Gammarus locusta (L.) Polskie Archiwum Hydrobiologii. 2000;48:541–559. [Google Scholar]
  • 204.Greze II. Feeding habits and food requirements of some amphipods in the Black Sea. Marine Biol. 1968;1:316–321. doi: 10.1007/BF00360783. [DOI] [Google Scholar]
  • 205.Kolding S, Fenchel TM. Patterns of Reproduction in Different Populations of Five Species of the Amphipod Genus Gammarus. Oikos. 1981;37:167. doi: 10.2307/3544461. [DOI] [Google Scholar]
  • 206.Speybroeck J, Alsteens L, Vincx M, Degraer S. Understanding the life of a sandy beach polychaete of functional importance – Scolelepis squamata (Polychaeta: Spionidae) on Belgian sandy beaches (northeastern Atlantic, North Sea) Estuarine, Coastal and Shelf Science. 2007;74:109–118. doi: 10.1016/j.ecss.2007.04.002. [DOI] [Google Scholar]
  • 207.MacCord FS, Amaral ACZ. The reproductive cycle of Scolelepis goodbodyi (Polychaeta, Spionidae) Mar Biol. 2007;151:1009–1020. doi: 10.1007/s00227-006-0540-9. [DOI] [Google Scholar]
  • 208.Dagli, E. Taxonomy and Ecology of Spionidae (Polychaeta- Annelida) distributed along the sublittoral area of the Turkish Coast of the Aegean Sea. (Ege University, 2008).
  • 209.Gerdol V, Hughes R. Feeding behaviour and diet of Corophium volutator in an estuary in southeastern England. Mar. Ecol. Prog. Ser. 1994;114:103–108. doi: 10.3354/meps114103. [DOI] [Google Scholar]
  • 210.Chang AL, Blakeslee AMH, Miller AW, Ruiz GM. Establishment Failure in Biological Invasions: A Case History of Littorina littorea in California, USA. PLoS ONE. 2011;6:e16035. doi: 10.1371/journal.pone.0016035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Watson DC, Norton TA. The habitat and feeding preferences of Littorina obtusata (L.) and L. mariae sacchi et rastelli. Journal of Experimental Marine Biology and Ecology. 1987;112:61–72. doi: 10.1016/S0022-0981(87)80015-1. [DOI] [Google Scholar]
  • 212.Williams GA. The effect of predation on the life histories of Littorina obtusata and Littorina mariae. J. Mar. Biol. Ass. 1992;72:403–416. doi: 10.1017/S0025315400037784. [DOI] [Google Scholar]
  • 213.Williams GA. The comparative ecology of the flat periwinkles, Littorina obtusata (L.) and Littorina mariae Sacchi et Rastelli. Field Studies. 1990;7:469–482. [Google Scholar]
  • 214.Goodwin BJ. The egg mass of littorina obtusata and lacuna pallidula (gastropoda: prosobranchia) Journal of Molluscan Studies. 1979;45:1–11. [Google Scholar]
  • 215.Granovitch AI, Maximovich AN. Long-term population dynamics of Littorina obtusata: the spatial structure and impact of trematodes. Hydrobiologia. 2013;706:91–101. doi: 10.1007/s10750-012-1411-7. [DOI] [Google Scholar]
  • 216.Goodwin BJ. The growth and breeding cycle of littorina obtusata (gastropoda: prosobranchiata) from cardigan bay. Journal of Molluscan Studies. 1978;44:231–242. [Google Scholar]
  • 217.Tebble N. LXI.—On three species of the genus Ophelia (Polychaeta) from British and adjacent waters. Annals and Magazine of Natural History. 1952;5:553–571. doi: 10.1080/00222935208654326. [DOI] [Google Scholar]
  • 218.Wilson JG. Long-term changes in density, population structure and growth rate of Tellina tenuis from Dublin Bay, Ireland. Oceanologica Acta. 1996;20:267–274. [Google Scholar]
  • 219.McDermott J. The western Pacific brachyuran (Hemigrapsus sanguineus: Grapsidae), in its new habitat along the Atlantic coast of the United States: geographic distribution and ecology. ICES Journal of Marine Science. 1998;55:289–298. doi: 10.1006/jmsc.1997.0273. [DOI] [Google Scholar]
  • 220.van den Brink AM, Wijnhoven S, McLay CL. Competition and niche segregation following the arrival of Hemigrapsus takanoi in the formerly Carcinus maenas dominated Dutch delta. Journal of Sea Research. 2012;73:126–136. doi: 10.1016/j.seares.2012.07.006. [DOI] [Google Scholar]
  • 221.Nour O. Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. AI. 2020;15:297–317. doi: 10.3391/ai.2020.15.2.06. [DOI] [Google Scholar]
  • 222.Ledesma ME, O’Connor NJ. Habitat and Diet of the Non-Native Crab Hemigrapsus sanguineus in Southeastern New England. Northeastern Naturalist. 2001;8:63. doi: 10.1656/1092-6194(2001)008[0063:HADOTN]2.0.CO;2. [DOI] [Google Scholar]
  • 223.Brousseau DJ, Baglivo JA. Laboratory Investigations of Food Selection by the Asian Shore Crab, Hemigrapsus Sanguineus: Algal Versus Animal Preference. Journal of Crustacean Biology. 2005;25:130–134. doi: 10.1651/C-2530. [DOI] [Google Scholar]
  • 224.Epifanio CE. Invasion biology of the Asian shore crab Hemigrapsus sanguineus: A review. Journal of Experimental Marine Biology and Ecology. 2013;441:33–49. doi: 10.1016/j.jembe.2013.01.010. [DOI] [Google Scholar]
  • 225.van den Brink A, Hutting S. Clash of the crabs: Interspecific, inter-cohort competition between the native European green crab, Carcinus maenas and the exotic brush clawed crab Hemigrapsus takanoi on artificial oyster reefs. Journal of Sea Research. 2017;128:41–51. doi: 10.1016/j.seares.2017.08.002. [DOI] [Google Scholar]
  • 226.Gollasch S. The asian decapod Hemigrapsus penicillatus (de Haan, 1835) (Grapsidae, Decapoda) introduced in European waters: status quo and future perspective. Helgolander Meeresunters. 1999;52:359–366. doi: 10.1007/BF02908909. [DOI] [Google Scholar]
  • 227.Fukui Y. Comparative Studies on the Life History of the Grapsid Crabs (Crustacea, Brachyura) Inhabiting Intertidal Cobble and Boulder Shores. Publ. SMBL. 1988;33:121–162. doi: 10.5134/176156. [DOI] [Google Scholar]
  • 228.Riser NW. Observations on the genus Ophelia (Polychaeta: Opheliidae) with the description of a new species. Ophelia. 1987;28:11–29. doi: 10.1080/00785326.1987.10430801. [DOI] [Google Scholar]
  • 229.Gothland M, et al. Biological traits explain the distribution and colonisation ability of the invasive shore crab Hemigrapsus takanoi. Estuarine, Coastal and Shelf Science. 2014;142:41–49. doi: 10.1016/j.ecss.2014.03.012. [DOI] [Google Scholar]
  • 230.Tyler PA. Seasonal variation and ecology of gametogenesis in the genus Ophiura (Ophiuroidea: Echinodermata) from the bristol channel. Journal of Experimental Marine Biology and Ecology. 1977;30:185–197. doi: 10.1016/0022-0981(77)90011-9. [DOI] [Google Scholar]
  • 231.Ronan TE. Formation and Paleontologic Recognition of Structures Caused by Marine Annelids. Paleobiology. 1977;3:389–403. doi: 10.1017/S0094837300005546. [DOI] [Google Scholar]
  • 232.Ballesteros E. Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanography and Marine Biology. 2006;44:123–195. [Google Scholar]
  • 233.McHugh D. A Comparative Study of Reproduction and Development in the Polychaete Family Terebellidae. The Biological Bulletin. 1993;185:153–167. doi: 10.2307/1541996. [DOI] [PubMed] [Google Scholar]
  • 234.Bartels-Hardege HD, Zeeck E. Reproductive behaviour of Nereis diversicolor (Annelida: Polychaeta) Mar. Biol. 1990;106:409–412. doi: 10.1007/BF01344320. [DOI] [Google Scholar]
  • 235.Nienhuis PH. The role of macrophytes, especially Zostera marina, in the carbon cycle of Lake Grevelingen (IV) Hydrobiological Bulletin. 1979;13:79–80. doi: 10.1007/BF02284731. [DOI] [Google Scholar]
  • 236.Nienhuis PH, van Ierland ET. Consumption of eelgrass, zostera marina, by birds and invertebrates during the growing season in lake grevelingen (SW Netherlands) Netherlands Journal of Sea Research. 1978;12:180–194. doi: 10.1016/0077-7579(78)90004-2. [DOI] [Google Scholar]
  • 237.Franke H-D, Gutow L, Janke M. Flexible habitat selection and interactive habitat segregation in the marine congeners Idotea baltica and Idotea emarginata (Crustacea, Isopoda) Mar Biol. 2007;150:929–939. doi: 10.1007/s00227-006-0421-2. [DOI] [Google Scholar]
  • 238.Orav-Kotta H, Kotta J. Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea. Hydrobiologia. 2004;514:79–85. doi: 10.1023/B:hydr.0000018208.72394.09. [DOI] [Google Scholar]
  • 239.Gutow L, Leidenberger S, Boos K, Franke H. Differential life history responses of two Idotea species (Crustacea: Isopoda) to food limitation. Mar. Ecol. Prog. Ser. 2007;344:159–172. doi: 10.3354/meps06894. [DOI] [Google Scholar]
  • 240.Jormalainen V, Tuomi J, Merilaita S. Mate choice for male and female size in aquatic isopod Idotea balthica. Annales Zoologici Fennici. 1992;29:161–167. [Google Scholar]
  • 241.Cazaux C. Développement larvaire de l’annelide polychete Phyllodocidae Eteone picta Quatrefages 1865 dans le Bassin d’Arcachon. Journal of Experimental Marine Biology and Ecology. 1985;85:191–209. doi: 10.1016/0022-0981(85)90143-1. [DOI] [Google Scholar]
  • 242.Kroer N. Life cycle characteristics and reproductive patterns of Idotea Spp. (Isopoda) in the Limfjord, Denmark. Ophelia. 1989;30:63–74. doi: 10.1080/00785326.1989.10430837. [DOI] [Google Scholar]
  • 243.Jormalainen V, Merilaita S, Riihimäki J. Costs of intersexual conflict in the isopod Idotea baltica: Fitness cost of intersexual conflict. Journal of Evolutionary Biology. 2001;14:763–772. doi: 10.1046/j.1420-9101.2001.00325.x. [DOI] [Google Scholar]
  • 244.Franke H-D, Beermann J. The influence of intrinsic and extrinsic factors on developmental parameters and their relationships in the marine isopod Idotea linearis (Crustacea) Hydrobiologia. 2014;732:197–212. doi: 10.1007/s10750-014-1846-0. [DOI] [Google Scholar]
  • 245.Tebble N. The polychaete fauna of the Gold Coast. Bulletin of the British Museum (Natural History) Zoology. 1955;3:59–148. [Google Scholar]
  • 246.Strong KW, Daborn GR. Growth and energy utilisation of the intertidal isopod Idotea baltica (Pallas) (Crustacea: Isopoda) Journal of Experimental Marine Biology and Ecology. 1979;41:101–123. doi: 10.1016/0022-0981(79)90046-7. [DOI] [Google Scholar]
  • 247.Webb CM, Tyler PA. Post-larval development of the common north-west European brittle stars Ophiura ophiura, O. albida and Acrocnida brachiata (Echinodermata: Ophiuroidea) Mar. Biol. 1985;89:281–292. doi: 10.1007/BF00393662. [DOI] [Google Scholar]
  • 248.Link H, Piepenburg D, Archambault P. Are Hotspots Always Hotspots? The Relationship between Diversity, Resource and Ecosystem Functions in the Arctic. PLoS ONE. 2013;8:e74077. doi: 10.1371/journal.pone.0074077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.Braeckman U, et al. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Mar. Ecol. Prog. Ser. 2010;399:173–186. doi: 10.3354/meps08336. [DOI] [Google Scholar]
  • 250.Olive PJW. The life-history and population structure of the polychaetes Nephtys caeca and Nephtys hombergii with special reference to the growth rings in the teeth. J. Mar. Biol. Ass. 1977;57:133–152. doi: 10.1017/S0025315400021299. [DOI] [Google Scholar]
  • 251.Olive PJW, Morgan PJ. The Reproductive Cycles of Four British Intertidal Nephtys Species in relation to their Geographical Distribution (Polychaeta: Nephyidae) Ophelia. 1991;5:351–361. [Google Scholar]
  • 252.Mathivat-Lallier MH, Cazaux C. Life-history of Nephtys hombergii in Arcachon Bay. Estuarine, Coastal and Shelf Science. 1991;32:1–9. doi: 10.1016/0272-7714(91)90024-6. [DOI] [Google Scholar]
  • 253.Dahm C. Growth, production and ecological significance of Ophiura albida and O. ophiura (Echinodermata: Ophiuroidea) in the German Bight. Marine Biology. 1993;116:431–437. doi: 10.1007/BF00350060. [DOI] [Google Scholar]
  • 254.Pernet B. Reproduction and development of three symbiotic scale worms (Polychaeta: Polynoidae) Invertebrate Biology. 2005;119:45–57. doi: 10.1111/j.1744-7410.2000.tb00173.x. [DOI] [Google Scholar]
  • 255.Fischer A, Dorresteijn A. The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays. 2004;26:314–325. doi: 10.1002/bies.10409. [DOI] [PubMed] [Google Scholar]
  • 256.Giangrande A, Fraschetti S, Terlizzi A. Local recruitment differences in Platynereis dumerilii (Polychaeta, Nereididae) and their consequences for population structure. Italian Journal of Zoology. 2002;69:133–139. doi: 10.1080/11250000209356450. [DOI] [Google Scholar]
  • 257.Giere O. Ecology and Biology of Marine Oligochaeta – an Inventory Rather than another Review. Hydrobiologia. 2006;564:103–116. doi: 10.1007/s10750-005-1712-1. [DOI] [Google Scholar]
  • 258.Timm T. Observations on the life cycles of aquatic Oligochaeta in aquaria. Zoosymposia. 2020;17:102–120. doi: 10.11646/zoosymposia.17.1.11. [DOI] [Google Scholar]
  • 259.Alkemade R, Wielemaker A, de Jong SA, Sandee AJJ. Experimental evidence for the role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulating the mineralization of Spartina anglica detritus. Marine Ecology Progress Series. 1992;90:149–155. doi: 10.3354/meps090149. [DOI] [Google Scholar]
  • 260.Boos K, Gutow L, Mundry R, Franke H-D. Sediment preference and burrowing behaviour in the sympatric brittlestars Ophiura albida Forbes, 1839 and Ophiura ophiura (Linnaeus, 1758) (Ophiuroidea, Echinodermata) Journal of Experimental Marine Biology and Ecology. 2010;393:176–181. doi: 10.1016/j.jembe.2010.07.021. [DOI] [Google Scholar]
  • 261.Thiel M, Reise K. Interaction of nemertines and their prey on tidal flats. Netherlands Journal of Sea Research. 1993;31:163–172. doi: 10.1016/0077-7579(93)90006-E. [DOI] [Google Scholar]
  • 262.Hopper BE, Meyers SP. Aspects of the life cycle of marine nematodes. Helgolander Wiss. Meeresunters. 1966;13:444–449. doi: 10.1007/BF01611961. [DOI] [Google Scholar]
  • 263.Vranken G, Heip C. The productivity of marine nematodes. Ophelia. 1986;26:429–442. doi: 10.1080/00785326.1986.10422004. [DOI] [Google Scholar]
  • 264.Maslakova SA. Development to metamorphosis of the nemertean pilidium larva. Frontiers in Zoology. 2010;7:30. doi: 10.1186/1742-9994-7-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Moss DK, et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc. R. Soc. B. 2016;283:20161364. doi: 10.1098/rspb.2016.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Ridgway ID, Richardson CA, Austad SN. Maximum Shell Size, Growth Rate, and Maturation Age Correlate With Longevity in Bivalve Molluscs. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2011;66A:183–190. doi: 10.1093/gerona/glq172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Abele D, Brey T, Philipp E. Bivalve models of aging and the determination of molluscan lifespans. Experimental Gerontology. 2009;44:307–315. doi: 10.1016/j.exger.2009.02.012. [DOI] [PubMed] [Google Scholar]
  • 268.Moran AL. Egg Size Evolution in Tropical American Arcid Bivalves: The Comparative Method and the Fossil Record. Evolution. 2004;58:2718–2733. doi: 10.1111/j.0014-3820.2004.tb01624.x. [DOI] [PubMed] [Google Scholar]
  • 269.Langeneck J, et al. Environmental features drive lineage diversification in the Aricidea assimilis species complex (Annelida, Paraonidae) in the Mediterranean Sea. The European Zoological Journal. 2022;89:1246–1258. doi: 10.1080/24750263.2022.2138588. [DOI] [Google Scholar]
  • 270.Grosse M, Zhadan A, Langeneck J, Fiege D, Martínez A. Still Digging: Advances and Perspectives in the Study of the Diversity of Several Sedentarian Annelid Families. Diversity. 2021;13:132. doi: 10.3390/d13030132. [DOI] [Google Scholar]
  • 271.DeBlois EM, Leggett WC. Functional response and potential impact of invertebrate predators on benthic fish eggs: analysis of the Calliopius laeviusculus-capelin (Mallotus villosus) predator-prey system. Mar. Ecol. Prog. Ser. 1991;69:205–216. doi: 10.3354/meps069205. [DOI] [Google Scholar]
  • 272.Williams PJ, Brown JA, Gotceitas V, Pepin P. Developmental changes in escape response performance of five species of marine larval fish. Can. J. Fish. Aquat. Sci. 1996;53:1246–1253. doi: 10.1139/f96-052. [DOI] [Google Scholar]
  • 273.Steele DH, Steele VJ. Some aspects of the biology of Calliopius laeviusculus (Krøyer) (Crustacea, Amphipoda) in the northwestern Atlantic. Can. J. Zool. 1973;51:723–728. doi: 10.1139/z73-106. [DOI] [Google Scholar]
  • 274.DeBlois EM, Leggett WC. Importance of biotic and abiotic regulators of abundance of the intertidal amphipod Calliopius laeviusculus (Amphipoda: Gammaridae) and assessment of the accuracy and precision of sampling methods for detecting abundance changes. Marine Biology. 1993;115:75–83. doi: 10.1007/BF00349388. [DOI] [Google Scholar]
  • 275.Ronowicz M, Włodarska-Kowalczuk M, Kukliński P. Depth- and substrate-related patterns of species richness and distribution of hydroids (Cnidaria, Hydrozoa) in Arctic coastal waters (Svalbard) Mar Ecol. 2013;34:165–176. doi: 10.1111/maec.12034. [DOI] [Google Scholar]
  • 276.Henry L, Kenchington E. Differences between epilithic and epizoic hydroid assemblages from commercial scallop grounds in the Bay of Fundy, northwest Atlantic. Mar. Ecol. Prog. Ser. 2004;266:123–134. doi: 10.3354/meps266123. [DOI] [Google Scholar]
  • 277.Méndez N. Life cycle of Capitella sp. Y (Polychaeta: Capitellidae) from Estero del Yugo, Mazatlán, Mexico. J. Mar. Biol. Ass. 2006;86:263–269. doi: 10.1017/S0025315406013117. [DOI] [Google Scholar]
  • 278.Linke-Gamenick I, Forbes VE, Méndez N. Effects of chronic fluoranthene exposure on sibling species of Capitella with different development modes. Marine Ecology Progress Series. 2000;203:191–203. doi: 10.3354/meps203191. [DOI] [Google Scholar]
  • 279.Tsutsumi H. Population dynamics of Capitella capitata (Polychaeta; Capitellidae) in an organically polluted cove. Mar. Ecol. Prog. Ser. 1987;36:139–149. doi: 10.3354/meps036139. [DOI] [Google Scholar]
  • 280.Gamenick I, Vismann B, Grieshaber M, Giere O. Ecophysiological differentiation of Capitella capitata (Polychaeta). Sibling species from different sulfidic habitats. Mar. Ecol. Prog. Ser. 1998;175:155–166. doi: 10.3354/meps175155. [DOI] [Google Scholar]
  • 281.Noffke A, Hertweck G, Kröncke I, Wehrmann A. Particle size selection and tube structure of the polychaete Owenia fusiformis. Estuarine, Coastal and Shelf Science. 2009;81:160–168. doi: 10.1016/j.ecss.2008.10.010. [DOI] [Google Scholar]
  • 282.Lancaster I. Reproduction and life history strategy of the hermit crab Pagurus bernhardus. J. Mar. Biol. Ass. 1990;70:129–142. doi: 10.1017/S0025315400034251. [DOI] [Google Scholar]
  • 283.Dualan IV, Williams JD. Palp growth, regeneration, and longevity of the obligate hermit crab symbiont Dipolydora commensalis (Annelida: Spionidae) Invertebrate Biology. 2011;130:264–276. doi: 10.1111/j.1744-7410.2011.00234.x. [DOI] [Google Scholar]
  • 284.Ansell AD. Distribution, growth and seasonal changes in biochemical composition for the bivalve Donax vittatus (da Costa) from Kames Bay, Millport. Journal of Experimental Marine Biology and Ecology. 1972;10:137–150. doi: 10.1016/0022-0981(72)90099-8. [DOI] [Google Scholar]
  • 285.Webb CM. Post-Larval Development of the Tellinacean Bivalves Abra Alba, Tellina Fabula and Donax Vittatus (Mollusca: Bivalvia), With Reference to the Late Larva. J. Mar. Biol. Ass. 1986;66:749–762. doi: 10.1017/S0025315400042338. [DOI] [Google Scholar]
  • 286.Thiel M. Population biology of Dyopedos monacanthus (Crustacea: Amphipoda) on estuarine soft-bottoms: importance of extended parental care and pelagic movements. Marine Biology. 1998;132:209–221. doi: 10.1007/s002270050387. [DOI] [Google Scholar]
  • 287.Buchanan JB. The biology of Echinocardium cordatum [Echinodermata: Spatangoidea] from different habitats. J. Mar. Biol. Ass. 1966;46:97–114. doi: 10.1017/S0025315400017574. [DOI] [Google Scholar]
  • 288.Nunes CDAP, Jangoux M. Reproductive cycle of the spatangoid echinoid Echinocardium cordatum (Echinodermata) in the southwestern North Sea. Invertebrate Reproduction & Development. 2004;45:41–57. doi: 10.1080/07924259.2004.9652572. [DOI] [Google Scholar]
  • 289.Maranhão P, Marques JC. The influence of temperature and salinity on the duration of embryonic development, fecundity and growth of the amphipod Echinogammarus marinus Leach (Gammaridae) Acta Oecologica. 2003;24:5–13. doi: 10.1016/S1146-609X(02)00003-6. [DOI] [Google Scholar]
  • 290.Alexander M, Dick J, O’Connor N, Haddaway N, Farnsworth K. Functional responses of the intertidal amphipod Echinogammarus marinus: effects of prey supply, model selection and habitat complexity. Mar. Ecol. Prog. Ser. 2012;468:191–202. doi: 10.3354/meps09978. [DOI] [Google Scholar]
  • 291.Martins I, Leite N, Constantino E. Consumption and feeding preference of Echinogammarus marinus on two different algae: Fucus vesiculosus and Ulva intestinalis. Journal of Sea Research. 2014;85:443–446. doi: 10.1016/j.seares.2013.07.017. [DOI] [Google Scholar]
  • 292.Skadsheim A. The Ecology of Intertidal Amphipods in the Oslofjord. The Life Cycles of Chaetogammarus marinus and C. stoerensis. Marine Ecology. 1982;3:213–224. doi: 10.1111/j.1439-0485.1982.tb00109.x. [DOI] [Google Scholar]
  • 293.Agnew DJ, Moore PG. The feeding ecology of two littoral amphipods (Crustacea), Echinogammarus pirloti (Sexton & Spooner) and E. obtusatus (Dahl) Journal of Experimental Marine Biology and Ecology. 1986;103:203–215. doi: 10.1016/0022-0981(86)90141-3. [DOI] [Google Scholar]
  • 294.Steele DH, Steele VJ. The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. III. Gammarus obtusatus Dahl. Can. J. Zool. 1970;48:989–995. doi: 10.1139/z70-174. [DOI] [Google Scholar]
  • 295.Verschut TA, Meineri E, Basset A. Biotic interactions affect the colonization behavior of aquatic detritivorous macroinvertebrates in a heterogeneous environment. Estuarine, Coastal and Shelf Science. 2015;157:120–128. doi: 10.1016/j.ecss.2015.03.014. [DOI] [Google Scholar]
  • 296.Lassen HH. Reproductive effort in Danish mudsnails (Hydrobiidae) Oecologia. 1979;40:365–369. doi: 10.1007/BF00345332. [DOI] [PubMed] [Google Scholar]
  • 297.Siegismund H. Life Cycle and Production of Hydrobia ventrosa and H. neglecta (Mollusca: Prosobranchia) Mar. Ecol. Prog. Ser. 1982;7:75–82. doi: 10.3354/meps007075. [DOI] [Google Scholar]
  • 298.Clark ME. Comparative fecundity in three Danish Mudsnails (Hydrobiidae) Ophelia. 1979;18:171–178. doi: 10.1080/00785326.1979.10425497. [DOI] [Google Scholar]
  • 299.Gaston, G. R., McLelland, J. A. & Heard, R. W. Feeding Biology, Distribution, and Ecology of Two Species of Benthic Polychaetes: Paraonis fulgens and Paraonis pygoenigmatica (Polychaeta: Paraonidae). GCR8, (1992).
  • 300.Winter AG, Deits RLH, Hosoi AE. Localized fluidization burrowing mechanics of Ensis directus. Journal of Experimental Biology. 2012;215:2072–2080. doi: 10.1242/jeb.058172. [DOI] [PubMed] [Google Scholar]
  • 301.Witbaard R, et al. The growth and dynamics of Ensis directus in the near-shore Dutch coastal zone of the North Sea. Journal of Sea Research. 2015;95:95–105. doi: 10.1016/j.seares.2014.09.008. [DOI] [Google Scholar]
  • 302.Shumway SE, Cucci TL, Newell RC, Yentsch CM. Particle selection, ingestion, and absorption in filter-feeding bivalves. Journal of Experimental Marine Biology and Ecology. 1985;91:77–92. doi: 10.1016/0022-0981(85)90222-9. [DOI] [Google Scholar]
  • 303.Dekker R, Beukema JJ. Long-term dynamics and productivity of a successful invader: The first three decades of the bivalve Ensis directus in the western Wadden Sea. Journal of Sea Research. 2012;71:31–40. doi: 10.1016/j.seares.2012.04.004. [DOI] [Google Scholar]
  • 304.Cardoso JFMF, Witte JIJ, van der Veer HW. Reproductive investment of the American razor clam Ensis americanus in the Dutch Wadden Sea. Journal of Sea Research. 2009;62:295–298. doi: 10.1016/j.seares.2009.08.001. [DOI] [Google Scholar]
  • 305.Birkely, Gulliksen Feeding ecology in five shrimp species (Decapoda, Caridea) from an Arctic fjord (Isfjorden, Svalbard), with emphasis on Sclerocrangon boreas (Phipps, 1774) Crustac. 2003;76:699–715. doi: 10.1163/156854003322381513. [DOI] [Google Scholar]
  • 306.Brown TA, Belt ST. Identification of the sea ice diatom biomarker IP25 in Arctic benthic macrofauna: direct evidence for a sea ice diatom diet in Arctic heterotrophs. Polar Biol. 2012;35:131–137. doi: 10.1007/s00300-011-1045-7. [DOI] [Google Scholar]
  • 307.Węsławski JM. Distribution of Decapoda (Crustacea) in South Spitsbergen coastal waters with remarks on their ecology and breeding biology. Polish Polar Research. 1987;8:121–134. [Google Scholar]
  • 308.Olive PJW. Reproductive biology of Eulalia viridis (Müller) (Polychaeta: Phyllodocidae) in the north eastern U.K. J. Mar. Biol. Ass. 1975;55:313–326. doi: 10.1017/S0025315400015964. [DOI] [Google Scholar]
  • 309.Surugiu V, Boltachova NA, Lisitskaya EV. The current status of Eunereis longissima (Johnston, 1840) (Polychaeta: Nereididae) in the Black Sea. Cahiers de Biologie Marine. 2018;59:64–69. [Google Scholar]
  • 310.Salzwedel H. Reproduction, growth, mortality and variations in abundance and biomass of Tellina fabula (Bivalvia) in the German Bight in 1975/1976. Veroffentlichungen des Instituts fur Meeresforschung in Bremerhaven. 1979;18:111–202. [Google Scholar]
  • 311.Silén L. Fertilization in the Bryozoa. Ophelia. 1972;10:27–34. doi: 10.1080/00785326.1972.10430099. [DOI] [Google Scholar]
  • 312.Stebbing, T. R. R. Gastrosaccus spinifer. Annals and Magazine of Natural History6, 328–328 (1880).
  • 313.Hostens K, Mees J. The mysid-feeding guild of demersal fishes in the brackish zone of the Westerschelde estuary. Journal of Fish Biology. 1999;55:704–719. [Google Scholar]
  • 314.Bamber RN, Henderson PA. Seasonality of caridean decapod and mysid distribution and movements within the Severn Estuary and Bristol Channel. Biological Journal of the Linnean Society. 1994;51:83–91. doi: 10.1111/j.1095-8312.1994.tb00946.x. [DOI] [Google Scholar]
  • 315.Rappé K, et al. Spatial distribution and general population characteristics of mysid shrimps in the Westerschelde estuary (SW Netherlands) Estuarine, Coastal and Shelf Science. 2011;91:187–197. doi: 10.1016/j.ecss.2010.10.017. [DOI] [Google Scholar]
  • 316.Kokarev VN, Vedenin AA, Basin AB, Azovsky AI. Taxonomic and functional patterns of macrobenthic communities on a high-Arctic shelf: A case study from the Laptev Sea. Journal of Sea Research. 2017;129:61–69. doi: 10.1016/j.seares.2017.08.011. [DOI] [Google Scholar]
  • 317.Ockelmann KW, Vahl O. On the biology of the polychaete Glycera alba, especially its burrowing and feeding. Ophelia. 1970;8:275–294. doi: 10.1080/00785326.1970.10429564. [DOI] [Google Scholar]
  • 318.Davy JM. The maturation and breeding biology of Harmotho imbricata (Polychaeta: Polynoidae) Mar. Biol. 1972;12:53–66. doi: 10.1007/BF00347429. [DOI] [Google Scholar]
  • 319.Plyuscheva M, Martin D, Britayev T. Diet analyses of the scale-worms Lepidonotus squamatus and Harmothoe imbricata (Polychaeta, Polynoidae) in the White Sea. Marine Biology Research. 2010;6:271–281. doi: 10.1080/17451000903334694. [DOI] [Google Scholar]
  • 320.Eckelbarger KJ, Watling L, Fournier H. Reproductive biology of the deep-sea polychaete Gorgoniapolynoe caeciliae (Polynoidae), a commensal species associated with octocorals. J. Mar. Biol. Ass. 2005;85:1425–1433. doi: 10.1017/S0025315405012609. [DOI] [Google Scholar]
  • 321.Bousfield EL. Adaptive Radiation in Sand-Burrowing Amphipod Crustaceans. Chesapeake Science. 1970;11:143. doi: 10.2307/1351237. [DOI] [Google Scholar]
  • 322.Jażdżewski K. Ecology and Biology of Species of the Jaera albifrons Group (Isopoda Asellota) in the Bay of Puck, Polish Baltic Sea. Crustaceana. 1969;17:265–281. doi: 10.1163/156854069X00619. [DOI] [Google Scholar]
  • 323.Sjöberg B, Sjoberg B. Population Density, Size, Age, Reproduction and Microdistribution in the Jaera albifrons Group (Isopoda) Oikos. 1970;21:241. doi: 10.2307/3543680. [DOI] [Google Scholar]
  • 324.Jones MB. The mouthparts of the members of the Jaera albifrons group of species (Crustacea: Isopoda) Marine Biology. 1972;14:264–270. doi: 10.1007/BF00348290. [DOI] [Google Scholar]
  • 325.Benvenuto C, Cerrano C, Mori M, Scinto A. Seasonal Cycle of Jassa Marmorata Holmes, 1903 (Amphipoda) in the Ligurian Sea (Mediterranean, Italy) Journal of Crustacean Biology. 2007;27:212–216. doi: 10.1651/S-2693.1. [DOI] [Google Scholar]
  • 326.Purz AK, Beermann J. Comparison of life history parameters in coexisting species of the genus Jassa (Amphipoda, Ischyroceridae) Journal of Crustacean Biology. 2013;33:784–792. doi: 10.1163/1937240X-00002190. [DOI] [Google Scholar]
  • 327.Clark RA. Dimorphic Males Display Alternative Reproductive Strategies in the Marine Amphipod Jassa marmorata Holmes (Corophioidea: Ischyroceridae) Ethology. 2010;103:531–553. doi: 10.1111/j.1439-0310.1997.tb00166.x. [DOI] [Google Scholar]
  • 328.Nicolaidou A. Life history and productivity of Pectinaria koreni Malmgren (polychaeta) Estuarine, Coastal and Shelf Science. 1983;17:31–43. doi: 10.1016/0272-7714(83)90043-4. [DOI] [Google Scholar]
  • 329.Dobbs F, Scholly T. Sediment processing and selective feeding by Pectinaria koreni (Polychaeta: Pectinariidae) Mar. Ecol. Prog. Ser. 1986;29:165–176. doi: 10.3354/meps029165. [DOI] [Google Scholar]
  • 330.Irlinger JP, Gentil F, Quintino V. Reproductive biology of the polychaete Pectinaria koreni (Malmgren) in the Bay of Seine (English Channel) Ophelia. 1991;5:343–350. [Google Scholar]
  • 331.Thiébaut E, Lagadeuc Y, Olivier F, Dauvin JC, Retière C. Do hydrodynamic factors affect the recruitment of marine invertebrates in a macrotidal area? The case study of Pectinaria koreni (Polychaeta) in the Bay of Seine (English Channel) Hydrobiologia. 1998;375/376:165–176. doi: 10.1023/A:1017092518829. [DOI] [Google Scholar]
  • 332.Jolly MT, Jollivet D, Gentil F, Thiébaut E, Viard F. Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity. 2005;94:23–32. doi: 10.1038/sj.hdy.6800543. [DOI] [PubMed] [Google Scholar]
  • 333.Foxon, G. E. H. XXXVII.— Notes on the natural history of certain sanddwelling Cumacea. Annals and Magazine of Natural History17, 377–393 (1936).
  • 334.Rabaut M, Vincx M, Degraer S. Do Lanice conchilega (sandmason) aggregations classify as reefs? Quantifying habitat modifying effects. Helgol Mar Res. 2009;63:37–46. doi: 10.1007/s10152-008-0137-4. [DOI] [Google Scholar]
  • 335.Callaway R, et al. Ephemeral Bio-engineers or Reef-building Polychaetes: How Stable are Aggregations of the Tube Worm Lanice conchilega (Pallas, 1766)? Integrative and Comparative Biology. 2010;50:237–250. doi: 10.1093/icb/icq060. [DOI] [PubMed] [Google Scholar]
  • 336.Kuhl H. Hydrography and biology of the Elbe Estuary. Oceanography and Marine Biology: an Annual Review. 1972;10:225–309. [Google Scholar]
  • 337.Heuers J, et al. A model on the distribution and abundance of the tube-building polychaete Lanice conchilega (Pallas, 1766) in the intertidal of the Wadden Sea. Verhandlungen der Gesellschaft für Ökologie. 1998;28:207–215. [Google Scholar]
  • 338.Smith RI. Notes on gamete production in Lanice conchilega (Annelida, Polychaeta, Terebellidae) Invertebrate Reproduction & Development. 1989;15:7–12. doi: 10.1080/07924259.1989.9672015. [DOI] [Google Scholar]
  • 339.Heath DJ, Ratford JR, Riddoch BJ, Childs D. Multiple mating in a natural population of the isopod Sphaeroma rugicauda; evidence from distorted ratios in offspring. Heredity. 1990;64:81–85. doi: 10.1038/hdy.1990.10. [DOI] [Google Scholar]
  • 340.Heath DJ, Khazaeli AA. Population dynamics of the estuarine isopod Sphaeroma rugicauda. Estuarine, Coastal and Shelf Science. 1985;20:105–116. doi: 10.1016/0272-7714(85)90120-9. [DOI] [Google Scholar]
  • 341.D’Andrea AF, Lopez GR, Aller RC. Rapid physical and biological particle mixing on an intertidal sandflat. J Mar Res. 2004;62:67–92. doi: 10.1357/00222400460744627. [DOI] [Google Scholar]
  • 342.Plyuscheva M, Martin D, Britayev T. Population ecology of two simpatric polychaetes, Lepidonotus squamatus and Harmothoe imbricata (Polychaeta, Polynoidae), in the White Sea. Invertzool. 2004;1:65–73. doi: 10.15298/invertzool.01.1.06. [DOI] [Google Scholar]
  • 343.Lacalli T. Annual spawning cycles and planktonic larvae of benthic invertebrates from Passamaquoddy Bay, New Brunswick. Can. J. Zool. 1981;59:433–440. doi: 10.1139/z81-063. [DOI] [Google Scholar]
  • 344.Myers AA, Costello MJ. The Amphipod Sibling Pair Leucothoe Lilljeborgi and L. Incisa in British and Irish Waters. J. Mar. Biol. Ass. 1986;66:75–82. doi: 10.1017/S0025315400039655. [DOI] [Google Scholar]
  • 345.Thiel M. Host-use and population demographics of the ascidian-dwelling amphipod Leucothoe spinicarpa: indication for extended parental care and advanced social behaviour. Journal of Natural History. 1999;33:193–206. doi: 10.1080/002229399300371. [DOI] [Google Scholar]
  • 346.Rodríguez-Rúa A, Delgado M, Silva L, Román S, Cojan M. First insights into population parameters and spatial distribution of the two morphotypes of Mactra stultorum (brownish and whitish) (Linnaeus, 1758) (Mollusca: Bivalvia) along the southwestern Spanish coast. Marine Biology Research. 2022;18:32–47. doi: 10.1080/17451000.2022.2064511. [DOI] [Google Scholar]
  • 347.Derbali A, Hadj Taieb A, Jarboui O. Stock Size Assessment, Distribution and Biology of the Surf Clam Mactra stultorum (Mollusca: Bivalvia) Along the Sfax Coasts (Tunisia, Mediterranean Sea) Thalassas. 2021;37:781–789. doi: 10.1007/s41208-021-00352-x. [DOI] [Google Scholar]
  • 348.Trueman ER. A comparative account of the burrowing process of species of mactra and of other bivalves. Journal of Molluscan Studies. 1968;38:139–151. [Google Scholar]
  • 349.Chetoui I, et al. Annual reproductive cycle and condition index of Mactra corallina (Mollusca: Bivalvia) from the north coast of Tunisia. Invertebrate Reproduction & Development. 2019;63:40–50. doi: 10.1080/07924259.2018.1529636. [DOI] [Google Scholar]
  • 350.Tran BT, et al. Determination of the Pacific oyster Magallana gigas (Crassostrea gigas) diet composition in two aquaculture farms by fecal DNA metabarcoding. Aquaculture. 2022;552:738042. doi: 10.1016/j.aquaculture.2022.738042. [DOI] [Google Scholar]
  • 351.Brandt G, Wehrmann A, Wirtz KW. Rapid invasion of Crassostrea gigas into the German Wadden Sea dominated by larval supply. Journal of Sea Research. 2008;59:279–296. doi: 10.1016/j.seares.2008.03.004. [DOI] [Google Scholar]
  • 352.Bernard I, et al. In situ spawning in a marine broadcast spawner, the Pacific oyster C rassostrea gigas: Timing and environmental triggers: Spawning in Oysters. Limnol. Oceanogr. 2016;61:635–647. doi: 10.1002/lno.10240. [DOI] [Google Scholar]
  • 353.Lango-Reynoso F, Chávez-Villaba J, Le Pennec M. Reproductive patterns of the Pacific oyster Crassostrea gigas in France. Invertebrate Reproduction & Development. 2006;49:41–50. doi: 10.1080/07924259.2006.9652192. [DOI] [Google Scholar]
  • 354.Diederich S. High survival and growth rates of introduced Pacific oysters may cause restrictions on habitat use by native mussels in the Wadden Sea. Journal of Experimental Marine Biology and Ecology. 2006;328:211–227. doi: 10.1016/j.jembe.2005.07.012. [DOI] [Google Scholar]
  • 355.Teixeira Alves M, Taylor NGH, Tidbury HJ. Understanding drivers of wild oyster population persistence. Sci Rep. 2021;11:7837. doi: 10.1038/s41598-021-87418-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 356.Mortimer K, Mackie ASY. Morphology, feeding and behaviour of British Magelona (Annelida: Magelonidae), with discussions on the form and function of abdominal lateral pouches. Mem. Mus. Vic. 2014;71:177–201. doi: 10.24199/j.mmv.2014.71.15. [DOI] [Google Scholar]
  • 357.Jacobs RPWM, Dubbers FaA. New records of Malacoceros fuliginosus (Claparède, 1869) (Polychaeta, Spionidae) from the Netherlands. Zoologische Bijdragen. 1980;27:4–8. [Google Scholar]
  • 358.Gudmundsson H. Life History Patterns of Polychaete Species of the Family Spionidae. J. Mar. Biol. Ass. 1985;65:93–111. doi: 10.1017/S0025315400060835. [DOI] [Google Scholar]
  • 359.Tyson RV, Pearson TH. Modern and ancient continental shelf anoxia: an overview. SP. 1991;58:1–24. doi: 10.1144/GSL.SP.1991.058.01.01. [DOI] [Google Scholar]
  • 360.Pettibone MH. Scaled polychaetes (Polynoidae) associated with ophiuroids and other invertebrates and review of species referred to Malmgrenia McIntosh and replaced by Malmgreniella Hartman, with descriptions of new taxa. Smithsonian Contributions to Zoology. 1993;538:1–92. [Google Scholar]
  • 361.Sturdivant SK, Díaz RJ, Cutter GR. Bioturbation in a Declining Oxygen Environment, in situ Observations from Wormcam. PLoS ONE. 2012;7:e34539. doi: 10.1371/journal.pone.0034539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 362.Sardo AM, Morgado F, Soares AMVM. Mesopodopsis slabberi (Crustacea: Mysidacea): can it be used in toxicity tests? Ecotoxicology and Environmental Safety. 2005;60:81–86. doi: 10.1016/j.ecoenv.2003.12.017. [DOI] [PubMed] [Google Scholar]
  • 363.Webb P, Perissinotto R, Wooldridge T. Feeding of Mesopodopsis slabberi (Crustacea, Mysidacea) on naturally occurring phytoplankton. Mar. Ecol. Prog. Ser. 1987;38:115–123. doi: 10.3354/meps038115. [DOI] [Google Scholar]
  • 364.Azeiteiro UMM, Jesus L, Marques JC. Distribution, Population Dynamics, and Production of the Suprabenthic Mysid Mesopodopsis Slabberi in the Mondego Estuary, Portugal. Journal of Crustacean Biology. 1999;19:498–509. doi: 10.2307/1549259. [DOI] [Google Scholar]
  • 365.Greenwood JG, Jones MB, Greenwood J. Salinity Effects on Brood Maturationo of the Mysid Crustacean Mesopodopsis Slabberi. J. Mar. Biol. Ass. 1989;69:683–694. doi: 10.1017/S0025315400031064. [DOI] [Google Scholar]
  • 366.Bucklin A. Adaptive advantages of patterns of growth and asexual reproduction of the sea anemone Metridium senile (L.) in intertidal and submerged populations. Journal of Experimental Marine Biology and Ecology. 1987;110:225–243. doi: 10.1016/0022-0981(87)90003-7. [DOI] [Google Scholar]
  • 367.Bucklin A. Growth and asexual reproduction of the sea anemone Metridium: comparative laboratory studies of three species. Journal of Experimental Marine Biology and Ecology. 1987;110:41–52. doi: 10.1016/0022-0981(87)90065-7. [DOI] [Google Scholar]
  • 368.Gemmill JF, MacBride EW. IX.—The development of the sea-anemones Metridium dianthus (Ellis) and Adamsia palliata (Bohad) Phil. Trans. R. Soc. Lond. B. 1920;209:351–375. doi: 10.1098/rstb.1920.0009. [DOI] [Google Scholar]
  • 369.Jones MB. The Distribution of Pariambus typicus Var. inermis Mayer (Amphipoda, Caprellidae) on the Common Starfish Asterias rubens L. Crustaceana. 1970;19:89–93. doi: 10.1163/156854070X00662. [DOI] [Google Scholar]
  • 370.Comely CA, Ansell AD. Invertebrate associates of the sea urchin, Echinus esculentus L., from the Scottish West Coast. Ophelia. 1988;28:111–137. doi: 10.1080/00785326.1988.10430807. [DOI] [Google Scholar]
  • 371.Plate S, Husemann E. Identification guide to the planktonic polychaete larvae around the island of Helgoland (German Bight) Helgolander Meeresunters. 1994;48:1–58. doi: 10.1007/BF02366201. [DOI] [Google Scholar]
  • 372.Ansell AD. Boring and burrowing mechanisms in Petricola pholadiformis Lamarck. Journal of Experimental Marine Biology and Ecology. 1970;4:211–220. doi: 10.1016/0022-0981(70)90034-1. [DOI] [Google Scholar]
  • 373.Wildish DJ. Secondary production of four sublittoral, soft-sediment amphipod populations in the Bay of Fundy. Can. J. Zool. 1984;62:1027–1033. doi: 10.1139/z84-146. [DOI] [Google Scholar]
  • 374.Wildish DJ, Dadswell MJ. Sublittoral Gammaridean Amphipods of soft sediment sin the Bay of Fundy. PROC. N.S. INST. SCI. 1985;35:1–15. [Google Scholar]
  • 375.Daly JM. Behavioural and Secretory Activity during Tube construction by Platynereis dumerilii Aud & M. Edw. [Polychaeta: Nereidae] J. Mar. Biol. Ass. 1973;53:521–529. doi: 10.1017/S0025315400058732. [DOI] [Google Scholar]
  • 376.Gambi MC, Zupo V, Buia MC, Mazzella L. Feeding ecology of platynereis dumerilii (audouin & milne-edwards) in the seagrass posidonia oceanica system: The role of the epiphytic flora (Polychaeta, nereididae) Ophelia. 2000;53:189–202. doi: 10.1080/00785326.2000.10409449. [DOI] [Google Scholar]
  • 377.Fischer AH, Henrich T, Arendt D. The normal development of Platynereis dumerilii (Nereididae, Annelida) Front Zool. 2010;7:31. doi: 10.1186/1742-9994-7-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 378.Lopes ML, et al. Functional traits of a native and an invasive clam of the genus Ruditapes occurring in sympatry in a coastal lagoon. Sci Rep. 2018;8:16901. doi: 10.1038/s41598-018-34556-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 379.Domínguez R, et al. Contrasting responsiveness of four ecologically and economically important bivalves to simulated heat waves. Marine Environmental Research. 2021;164:105229. doi: 10.1016/j.marenvres.2020.105229. [DOI] [PubMed] [Google Scholar]
  • 380.Evans SM, Downie PJ. Decision-making processes in the polychaete Platynereis dumerilii. Animal Behaviour. 1986;34:472–479. doi: 10.1016/S0003-3472(86)80116-6. [DOI] [Google Scholar]
  • 381.Miron G, Desrosiers G, Retière C, Masson S. Variations in time budget of the polychaete Nereis virens as a function of density and acclimation after introduction to a new burrow. Marine Biology. 1992;114:41–48. doi: 10.1007/BF00350854. [DOI] [Google Scholar]
  • 382.Chícharo L, Chícharo MA. Effects of environmental conditions on planktonic abundances, benthic recruitment and growth rates of the bivalve mollusc Ruditapes decussatus in a Portuguese coastal lagoon. Fisheries Research. 2001;53:235–250. doi: 10.1016/S0165-7836(00)00290-3. [DOI] [Google Scholar]
  • 383.Chícharo L, Chícharo MA. A juvenile recruitment prediction model for Ruditapes decussatus (L.) (Bivalvia: Mollusca) Fisheries Research. 2001;53:219–233. doi: 10.1016/S0165-7836(00)00300-3. [DOI] [Google Scholar]
  • 384.Matias D, Joaquim S, Leitão A, Massapina C. Effect of geographic origin, temperature and timing of broodstock collection on conditioning, spawning success and larval viability of Ruditapes decussatus (Linné, 1758) Aquacult Int. 2009;17:257–271. doi: 10.1007/s10499-008-9197-3. [DOI] [Google Scholar]
  • 385.Urrutia MB, Ibarrola I, Iglesias JIP, Navarro E. Energetics of growth and reproduction in a high-tidal population of the clam Ruditapes decussatus from Urdaibai Estuary (Basque Country, N. Spain) Journal of Sea Research. 1999;42:35–48. doi: 10.1016/S1385-1101(99)00017-9. [DOI] [Google Scholar]
  • 386.Wolff WJ. Three species of Microphthalmus (Polychaeta) new to The Netherlands. Zoologische Mededelingen. 1969;43:307–311. [Google Scholar]
  • 387.Watkin EE. The Swimming and Burrowing Habits of Some Species of the Amphipod Genus. Bathyporeia. J. Mar. Biol. Ass. 1939;23:457–465. doi: 10.1017/S0025315400014016. [DOI] [Google Scholar]
  • 388.Fincham AA. Ecology and population studies of some intertidal and sublittoral sand-dwelling amphipods. J. Mar. Biol. Ass. 1971;51:471–488. doi: 10.1017/S0025315400031921. [DOI] [Google Scholar]
  • 389.Kamihira Y. Life History of Sand-Burrowing Amphipod Haustorioides japonicus (Crustacea: Dogielinotidae) Bull. Fac. Fish. Hokkaido Univ. 1981;32:338–348. [Google Scholar]
  • 390.Barnett PRO, Cole HA. Some changes in intertidal sand communities due to thermal pollution. Proc. R. Soc. Lond. B. 1971;177:353–364. doi: 10.1098/rspb.1971.0035. [DOI] [PubMed] [Google Scholar]
  • 391.Miller DC. Mechanical post-capture particle selection by suspension- and deposit-feeding Corophium. Journal of Experimental Marine Biology and Ecology. 1984;82:59–76. doi: 10.1016/0022-0981(84)90139-4. [DOI] [Google Scholar]
  • 392.Sheader M. Distribution and reproductive biology Of Corophium insidiosum (Amphipoda) on the north-east coast of England. J. Mar. Biol. Ass. 1978;58:585–596. doi: 10.1017/S0025315400041242. [DOI] [Google Scholar]
  • 393.Prato E, Biandolino F. Life history of the amphipod Corophium insidiosum (Crustacea: Amphipoda) from Mar Piccolo (Ionian Sea, Italy) Sci. Mar. 2006;70:355–362. doi: 10.3989/scimar.2006.70n3355. [DOI] [Google Scholar]
  • 394.Birklund J. Biomass, growth and production of the amphipod Corophium insidiosum crawford, and preliminary notes on Corophium volutator (Pallas) Ophelia. 1977;16:187–203. doi: 10.1080/00785326.1977.10425470. [DOI] [Google Scholar]
  • 395.Nair KKC, Anger K. Life cycle ofCorophium insidiosum (Crustacea, Amphipoda) in laboratory culture. Helgolander Wiss. Meeresunters. 1979;32:279–294. doi: 10.1007/BF02189586. [DOI] [Google Scholar]
  • 396.Barnard JL, Thomas JD, Sandved KB. Behavior of Gammaridean Amphipoda: Corophium, Grandidierella, Podocerus, and Gibberosus (American Megaluropus) in Florida. Crustaceana. Supplement. 1988;13:234–244. [Google Scholar]
  • 397.Gibson R, Junoy J. A new species of Tetrastemma (Nemertea: Enopla: Monostiliferoidea) from Ría de Foz, north-western Spain, found living in the mantle cavity of the bivalve mollusc Scrobicularia plana. Zoological Journal of the Linnean Society. 1991;103:225–240. doi: 10.1111/j.1096-3642.1991.tb00904.x. [DOI] [Google Scholar]
  • 398.García-Pérez JA, Anadón N. Seasonal abundance and reproductive strategy of Tetrastemma fozensis (Hoplonemertea, Nemertea) in the Villaviciosa estuary (Asturias, Northern Spain) Estuarine, Coastal and Shelf Science. 2004;60:581–586. doi: 10.1016/j.ecss.2004.02.013. [DOI] [Google Scholar]
  • 399.Beare DJ, Moore PG. The distribution, growth and reproduction of Pontocrates arenarius and P. altamarinus (Crustacea: Amphipoda) at Millport, Scotland. J. Mar. Biol. Ass. 1996;76:931–950. doi: 10.1017/S0025315400040893. [DOI] [Google Scholar]
  • 400.Williams EA, Jékely G. Towards a systems-level understanding of development in the marine annelid Platynereis dumerilii. Current Opinion in Genetics & Development. 2016;39:175–181. doi: 10.1016/j.gde.2016.07.005. [DOI] [PubMed] [Google Scholar]
  • 401.Schiedges K-L. Reproductive biology and ontogenesis in the polychaete genus Autolytus (Annelida: Syllidae): Observations on laboratory-cultured individuals. Mar. Biol. 1979;54:239–250. doi: 10.1007/BF00395786. [DOI] [Google Scholar]
  • 402.Amui-Vedel A-M, Hayward PJ, Porter JS. Zooid size and growth rate of the bryozoan Cryptosula pallasiana Moll in relation to temperature, in culture and in its natural environment. Journal of Experimental Marine Biology and Ecology. 2007;353:1–12. doi: 10.1016/j.jembe.2007.02.020. [DOI] [Google Scholar]
  • 403.Astthorsson OS. Records and life history of Praunus flexuosus (Crustacea: Mysidacea) in Icelandic waters. J Plankton Res. 1987;9:955–964. doi: 10.1093/plankt/9.5.955. [DOI] [Google Scholar]
  • 404.Salman SD. Larval Development of the Crab Pilumnus hirtellus (L.) Reared in the Laboratory (Decapoda Brachyura, Xanthidae) Crustac. 1982;42:113–126. doi: 10.1163/156854082X00795. [DOI] [Google Scholar]
  • 405.Almaça C. Crabs of the Sabellaria alveolata (Linnaeus, 1767) community. Egg number and population size structure in Pilumnus hirtellus (Linnaeus, 1761) and Porcellana platycheles (Pennant, 1777) Nova Série. 1987;1:19–32. [Google Scholar]
  • 406.Zalota AK, Kolyuchkina GA, Tiunov AV, Biriukova SV, Spiridonov VA. The trophic position of the alien crab Rhithropanopeus harrisii (crustacea decapoda panopeidae) in the Taman Bay, Sea of Azov community. Oceanology. 2017;57:289–297. doi: 10.1134/S0001437017020217. [DOI] [Google Scholar]
  • 407.Holme NA. Notes on the mode of life of the Tellinidae (Lamellibranchia) J. Mar. Biol. Ass. 1961;41:699–703. doi: 10.1017/S0025315400016258. [DOI] [Google Scholar]
  • 408.Pinn EH, Richardson CA, Thompson RC, Hawkins SJ. Burrow morphology, biometry, age and growth of piddocks (Mollusca: Bivalvia: Pholadidae) on the south coast of England. Marine Biology. 2005;147:943–953. doi: 10.1007/s00227-005-1582-0. [DOI] [Google Scholar]
  • 409.Gage J. The life-histories of the bivalves Montacuta substriata and M. ferruginosa, ‘commensals’ with spatangoids. J. Mar. Biol. Ass. 1966;46:499–511. doi: 10.1017/S0025315400033300. [DOI] [Google Scholar]
  • 410.Fox TH, Jespersen Å, Lützen J. Sperm transfer and reproductive biology in species of hermaphroditic bivalves (Galeommatoidea: Montacutidae) J. Morphol. 2007;268:936–952. doi: 10.1002/jmor.10538. [DOI] [PubMed] [Google Scholar]
  • 411.Gage J. Observations on the bivalves Montacuta substriata and M. ferruginosa, ‘commensals’ with spatangoids. J. Mar. Biol. Ass. 1966;46:49–70. doi: 10.1017/S0025315400017549. [DOI] [Google Scholar]
  • 412.Zelaya DG, Ituarte C. Tellimya Tehuelcha, New Species: First Record of Tellimya Brown, 1827, In South America (Bivalvia: Lasaeidae), with Notes on Life History and Reproduction. Malacologia. 2012;55:173–182. doi: 10.4002/040.055.0112. [DOI] [Google Scholar]
  • 413.Garwood PR. The Life-Cycle and Population Dynamics of Streptosyllis Websteri (Polychaeta: Syllidae) from a Northumberland Beach. J. Mar. Biol. Ass. 1982;62:783–798. doi: 10.1017/S0025315400070338. [DOI] [Google Scholar]
  • 414.Dauer DM, Mahon HK, Sardá R. Functional morphology and feeding behavior of Streblospio benedicti and S. shrubsolii (Polychaeta: Spionidae) Hydrobiologia. 2003;496:207–213. doi: 10.1023/A:1026196831934. [DOI] [Google Scholar]
  • 415.Sardá R, Martin D. Populations of Streblospio (Polychaeta: Spionidae) in temperate zones: demography and production. J. Mar. Biol. Ass. 1993;73:769–784. doi: 10.1017/S0025315400034718. [DOI] [Google Scholar]
  • 416.Kevrekidis T. Population Dynamics, Reproductive Biology and Productivity ofStreblospio shrubsolii (Polychaeta: Spionidae) in Different Sediments at Low Salinities in a Mediterranean Lagoon (Monolimni Lagoon, Northern Aegean) Internat. Rev. Hydrobiol. 2005;90:100–121. doi: 10.1002/iroh.200310713. [DOI] [Google Scholar]
  • 417.Dean D. On the reproduction and larval development of streblospio benedicti webster. The Biological Bulletin. 1965;128:67–76. doi: 10.2307/1539390. [DOI] [Google Scholar]
  • 418.Levin LA. Multiple patterns of development in streblospio benedicti webster (spionidae) from three coasts of north america. The Biological Bulletin. 1984;166:494–508. doi: 10.2307/1541157. [DOI] [Google Scholar]
  • 419.Mauchline J. Breeding and fecundity of Praunus inermis [Crustacea, Mysidacea] J. Mar. Biol. Ass. 1965;45:663–671. doi: 10.1017/S0025315400016490. [DOI] [Google Scholar]
  • 420.Warwick RM, George CL, Davies JR. Annual macrofauna production in a Venus community. Estuarine and Coastal Marine Science. 1978;7:215–241. doi: 10.1016/0302-3524(78)90107-X. [DOI] [Google Scholar]
  • 421.Lavesque N, et al. New records of Spio symphyta and Spio martinensis (‘Polychaeta’: Canalipalpata: Spionidae) from Arcachon Bay (France), NE Atlantic. Mar Biodiv. 2015;45:77–86. doi: 10.1007/s12526-014-0230-7. [DOI] [Google Scholar]
  • 422.Gravina MF, Somaschini A. New record of Mediomastus fragilis Rasmussen, 1973 for the Italian Fauna and notes on the genus Mediomastus Hartmann, 1944 (Polychaeta, Capitellidae) Atti della Società Toscana di Scienze Naturali, Memorie (Serie B) 1988;95:59–67. [Google Scholar]
  • 423.Santos S, Luttikhuizen PC, Campos J, Heip CHR, van der Veer HW. Spatial distribution patterns of the peppery furrow shell Scrobicularia plana (da Costa, 1778) along the European coast: A review. Journal of Sea Research. 2011;66:238–247. doi: 10.1016/j.seares.2011.07.001. [DOI] [Google Scholar]
  • 424.Schöttler U, Grieshaber M. Adaptation of the polychaete worm Scoloplos armiger to hypoxic conditions. Mar. Biol. 1988;99:215–222. doi: 10.1007/BF00391983. [DOI] [Google Scholar]
  • 425.Little C, Nix W. The burrowing and floating behaviour of the gastropod Hydrobia ulvae. Estuarine and Coastal Marine Science. 1976;4:537–544. doi: 10.1016/0302-3524(76)90028-1. [DOI] [Google Scholar]
  • 426.Morris S, Taylor AC. Heart rate response of the intertidal prawn Palaemon elegans to simulated and in situ environmental changes. Marine Ecology Progress Series. 1984;20:127–136. doi: 10.3354/meps020127. [DOI] [Google Scholar]
  • 427.Mettam C, Santhanam V, Havard MSC. The Oogenic Cycle of Nereis Diversicolor Under Natural Conditions. Journal of the Marine Biological Association of the United Kingdom. 1982;62:637–645. doi: 10.1017/S0025315400019809. [DOI] [Google Scholar]
  • 428.Chambers MR, Milne H. Life cycle and production of Nereis diversicolor O. F. Müller in the Ythan Estuary, Scotland. Estuarine and Coastal Marine Science. 1975;3:133–144. doi: 10.1016/0302-3524(75)90016-X. [DOI] [Google Scholar]
  • 429.Kotta J, Orav-Kotta H, Herkül K, Kotta I. Habitat choice of the invasive Gammarus tigrinus and the native Gammarus salinus indicates weak interspecific competition. Boreal environment research. 2011;16(suppl. A):64–72. [Google Scholar]
  • 430.Kinné O. Gammarus salinus - einige Daten uber den Umwelt-einfluss auf Wachstum, Hautungsfolge, Herzfrequenz und Eientwicklungsdauer. Crustaceana. 1960;1:208–217. doi: 10.1163/156854060X00267. [DOI] [Google Scholar]
  • 431.Leineweber P. The Life-Cycles of Four Amphipod Species in the Kattegat. Holarctic Ecology. 1985;8:165–174. [Google Scholar]
  • 432.Spooner GM. The Distribution of Gammarus Species in Estuaries. Part I. Journal of the Marine Biological Association of the United Kingdom. 1947;27:1–52. doi: 10.1017/S0025315400014107. [DOI] [Google Scholar]
  • 433.Chícharo L, Chícharo A, Gaspar M, Alves F, Regala J. Ecological characterization of dredged and non-dredged bivalve fishing areas off south Portugal. J. Mar. Biol. Ass. 2002;82:41–50. doi: 10.1017/S0025315402005167. [DOI] [Google Scholar]
  • 434.Nelson DA, Calabrese A, Greig RA, Yevich PP, Chang S. Long-term silver effects on the marine gastropod Crepidula fornicata. Marine Ecology Progress Series. 1983;12:155–165. doi: 10.3354/meps012155. [DOI] [Google Scholar]
  • 435.Grady SP, Rutecki D, Carmichael R, Valiela I. Age Structure of the Pleasant Bay Population of Crepidula fornicata: A Possible Tool For Estimating Horseshoe Crab Age. The Biological Bulletin. 2001;201:296–297. doi: 10.2307/1543375. [DOI] [PubMed] [Google Scholar]
  • 436.Thouzeau G. Experimental collection of postlarvae of Pecten maximus (L.) and other benthic macrofaunal species in the Bay of Saint-Brieuc, France. II. Reproduction patterns and postlarval growth of five mollusc species. Journal of Experimental Marine Biology and Ecology. 1991;148:181–200. doi: 10.1016/0022-0981(91)90081-7. [DOI] [Google Scholar]
  • 437.Dolmer P, et al. Short-term impact of blue mussel dredging (Mytilus edulis L.) on a benthic community. Hydrobiologia. 2001;465:115–127. doi: 10.1023/A:1014549026157. [DOI] [Google Scholar]
  • 438.Henderson PA, Holmes RHA. On the population biology of the common shrimp Crangon crangon (L.) (Crustacea: Caridea) in the Severn Estuary and Bristol Channel. Journal of the Marine Biological Association of the United Kingdom. 1987;67:825–847. doi: 10.1017/S0025315400057076. [DOI] [Google Scholar]
  • 439.Kamermans P, Huitema HJ. Shrimp (Crangon crangon L.) browsing upon siphon tips inhibits feeding and growth in the bivalve Macoma balthica (L.) Journal of Experimental Marine Biology and Ecology. 1994;175:59–75. doi: 10.1016/0022-0981(94)90176-7. [DOI] [Google Scholar]
  • 440.Oh C, Hartnoll R, Nash R. Feeding ecology of the common shrimp Crangon crangon in Port Erin Bay, Isle of Man, Irish Sea. Mar. Ecol. Prog. Ser. 2001;214:211–223. doi: 10.3354/meps214211. [DOI] [Google Scholar]
  • 441.Criales MM, Anger K. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni. Helgolander Meeresunters. 1986;40:241–265. doi: 10.1007/BF01983735. [DOI] [Google Scholar]
  • 442.Hughes RG. Dispersal by Benthic Invertebrates: The in Situ Swimming Behaviour of the Amphipod Corophium Volutator. Journal of the Marine Biological Association of the United Kingdom. 1988;68:565–579. doi: 10.1017/S002531540002871X. [DOI] [Google Scholar]
  • 443.Conradi M, Depledge MH. Effects of zinc on the life-cycle, growth and reproduction of the marine amphipod Corophium volutator. Marine Ecology Progress Series. 1999;176:131–138. doi: 10.3354/meps176131. [DOI] [Google Scholar]
  • 444.Wilson WH, Parker K. The life history of the amphipod, Corophium volutator: the effects of temperature and shorebird predation. Journal of Experimental Marine Biology and Ecology. 1996;196:239–250. doi: 10.1016/0022-0981(95)00133-6. [DOI] [Google Scholar]
  • 445.Essink K, Kleef HL, Visser W. On the pelagic occurrence and dispersal of the benthic amphipod Corophium volutator. Journal of the Marine Biological Association of the United Kingdom. 1989;69:11–15. doi: 10.1017/S0025315400049067. [DOI] [Google Scholar]
  • 446.McKinney FK. Evolution of Erect Marine Bryozoan Faunas: Repeated Success of Unilaminate Species. The American Naturalist. 1986;128:795–809. doi: 10.1086/284606. [DOI] [Google Scholar]
  • 447.Hatcher AM. Epibenthic colonisation patterns on slabs of stabilised coal-waste in Poole Bay, UK. Hydrobiologia. 1998;367:153–162. doi: 10.1023/A:1003228100220. [DOI] [Google Scholar]
  • 448.Olive PJW. Reproduction of a Northumberland population of the polychaete Cirratulus cirratus. Marine Biology. 1970;5:259–273. doi: 10.1007/BF00346914. [DOI] [Google Scholar]
  • 449.Riisgaard HU, Seerup DF, Jensen MH, Glob E, Larsen PS. Grazing impact of filter-feeding zoobenthos in a Danish fjord. Journal of Experimental Marine Biology and Ecology. 2004;307:261–271. doi: 10.1016/j.jembe.2004.02.008. [DOI] [Google Scholar]
  • 450.Bensaâd-Bendjedid, L. et al. Age structure, growth and shell form of Cerastoderma glaucum (Bivalvia: Cardiidae) from El Mellah lagoon, Algeria. AACL Bioflux11, (2018).
  • 451.Gontikaki E, Antoniadou C, Chintiroglou CC. Population structure of Cerastoderma glaucum and Abra ovata in Vouliagmeni Lagoon (Attiki) J. Mar. Biol. Ass. 2003;83:1095–1097. doi: 10.1017/S0025315403008312h. [DOI] [Google Scholar]
  • 452.Yankson K. Reproductive cycles of cerastoderma glaucum (bruguière) and c. edule (l.) with special reference to the effects of the 1981–82 severe winter. Journal of Molluscan Studies. 1986;52:6–14. doi: 10.1093/mollus/52.1.6. [DOI] [Google Scholar]
  • 453.Kingston P. Some Observations on the Effects of Temperature and Salinity Upon the Growth of Cardium Edule and Cardium Glaucum Larvae in the Laboratory. J. Mar. Biol. Ass. 1974;54:309–317. doi: 10.1017/S0025315400058562. [DOI] [Google Scholar]
  • 454.Montaudouin X, Bachelet G. Experimental evidence of complex interactions between biotic and abiotic factors in the dynamics of an intertidal population of the bivalve Cerastoderma edule. Oceanologica Acta. 1996;19:449–463. [Google Scholar]
  • 455.Jelesias JIP, Navarro E. Shell growth of the cockle cerastoderma edule in the mundaca estuary (north spain) J Mollus Stud. 1990;56:229–238. doi: 10.1093/mollus/56.2.229. [DOI] [Google Scholar]
  • 456.Seed R, Brown RA. A comparison of the reproductive cycles of Modiolus modiolus (L.), Cerastoderma ( = Cardium) edule (L.), and Mytilus edulis L. in Strangford Lough, Northern Ireland. Oecologia. 1977;30:173–188. doi: 10.1007/BF00345419. [DOI] [PubMed] [Google Scholar]
  • 457.Lebour MV. Notes on the breeding of some lamellibranchs from Plymouth and their larvae. J. Mar. Biol. Ass. 1938;23:119. doi: 10.1017/S002531540005400X. [DOI] [Google Scholar]
  • 458.Ropes JW. The feeding habits of the Green crab, Carcinus maenas (L.) Fishery Bulletin. 1968;67:183–203. [Google Scholar]
  • 459.Young AM, Elliott JA. Life History and Population Dynamics of Green Crabs (Carcinus maenas) Fishes. 2019;5:4. doi: 10.3390/fishes5010004. [DOI] [Google Scholar]
  • 460.Crothers JH. The biology of the shore crab Carcinus maenas (L.) 1. The background-anatomy, growth and life history. Field Studies. 1967;2:407–434. [Google Scholar]
  • 461.Mohamedeen H, Hartnoll RG. Larval and postlarval growth of individually reared specimens of the common shore crab Carcinus maenas (L.) Journal of Experimental Marine Biology and Ecology. 1989;134:1–24. doi: 10.1016/0022-0981(90)90053-F. [DOI] [Google Scholar]
  • 462.Méndez N, Romero J, Flos J. Population dynamics and production of the polychaete Capitella capitata in the littoral zone of Barcelona (Spain, NW Mediterranean) Journal of Experimental Marine Biology and Ecology. 1997;218:263–284. doi: 10.1016/S0022-0981(97)00078-6. [DOI] [Google Scholar]
  • 463.Martin JP, Bastida R. Life history and production of capitella capitata (capitellidae: polychaeta) in río de la plata estuary (argentina) Thalassas. 2006;22:25–38. [Google Scholar]
  • 464.Holte B, Oug E. Soft-bottom macrofauna and responses to organic enrichment in the subarctic wates of Tromsø, northern Norway. Journal of Sea Research. 1996;36:227–237. doi: 10.1016/S1385-1101(96)90792-3. [DOI] [Google Scholar]
  • 465.Lawton P, Hughes R. Foraging behaviour of the crab Cancer pagurus feeding on the gastropods Nucella lapillus and Littorina littorea: comparisons with optimal foraging theory. Mar. Ecol. Prog. Ser. 1985;27:143–154. doi: 10.3354/meps027143. [DOI] [Google Scholar]
  • 466.Lawton P. Predatory interaction between the brachyuran crab Cancer pagurus and decapod crustacean prey. Marine Ecology Progress Series. 1989;52:169–179. doi: 10.3354/meps052169. [DOI] [Google Scholar]
  • 467.Easton BAA, Boon A, Richards J, Scott K. Comparing the Size at Onset of Sexual Maturity of Edible Crab (Cancer pagurus, Cancridae) in Berwickshire and Northumberland. Fishes. 2023;8:260. doi: 10.3390/fishes8050260. [DOI] [Google Scholar]
  • 468.Öndes F, Kaiser MJ, Murray LG, Torres G. Reproductive Ecology, Fecundity, and Elemental Composition of Eggs in Brown Crab Cancer pagurus in The Isle of Man. shre. 2016;35:539–547. [Google Scholar]
  • 469.Rainbow PS. An introduction to the biology of British littoral barnacles. Field Studies. 1984;6:1–51. [Google Scholar]
  • 470.Barnes H, Powell HT. The Growth Of Balanus Balanoides (L.) and B. Crenatus Brug. Under Varying Conditions Of Submersion. Journal of the Marine Biological Association of the United Kingdom. 1953;32:107–127. doi: 10.1017/S0025315400011450. [DOI] [Google Scholar]
  • 471.Beukema JJ, De Vlas J. Population parameters of the lugworm, arenicola marina, living on tidal flats in the Dutch Wadden Sea. Netherlands Journal of Sea Research. 1979;13:331–353. doi: 10.1016/0077-7579(79)90010-3. [DOI] [Google Scholar]
  • 472.Borsetti S, Munroe D, Rudders D, Chang J-H. Timing of the reproductive cycle of waved whelk, Buccinum undatum, on the U.S. Mid-Atlantic Bight. Helgoland Marine Research. 2020;74:5. doi: 10.1186/s10152-020-00537-6. [DOI] [Google Scholar]
  • 473.Valentinsson D. Reproductive cycle and maternal effects on offspring size and number in the neogastropod Buccinum undatum (L.) Marine Biology. 2002;140:1139–1147. doi: 10.1007/s00227-002-0793-x. [DOI] [Google Scholar]
  • 474.Farke H. Population dynamics reproduction and early development of tharyx marioni polychaeta cirratulidae on tidal flats of the german bight. Veroeffentlichungen des Instituts fuer Meeresforschung in Bremerhaven. 1979;18:69–100. [Google Scholar]
  • 475.Allen PL. Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: A study in selective predation. Journal of Experimental Marine Biology and Ecology. 1983;70:79–90. doi: 10.1016/0022-0981(83)90150-8. [DOI] [Google Scholar]
  • 476.Nichols D, Barker MF. Growth of juvenile Asterias rubens L. (Echinodermata: Asteroidea) on an intertidal reef in southwestern Britain. Journal of Experimental Marine Biology and Ecology. 1984;78:157–165. doi: 10.1016/0022-0981(84)90076-5. [DOI] [Google Scholar]
  • 477.Nichols D, Barker MF. A comparative study of reproductive and nutritional periodicities in two populations of Asterias rubens (Echinodermata: Asteroidea) from the English Channel. J. Mar. Biol. Ass. 1984;64:471–484. doi: 10.1017/S0025315400030137. [DOI] [Google Scholar]
  • 478.Niermann U, Bauerfeind E, Hickel W, Westernhagen HV. The recovery of benthos following the impact of low oxygen content in the German Bight. Netherlands Journal of Sea Research. 1990;25:215–226. doi: 10.1016/0077-7579(90)90023-A. [DOI] [Google Scholar]
  • 479.Radashevsky VI, et al. Molecular analysis of Spiophanes bombyx complex (Annelida: Spionidae) with description of a new species. PLoS ONE. 2020;15:e0234238. doi: 10.1371/journal.pone.0234238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 480.Barker MF, Nichols D. Reproduction, recruitment and juvenile ecology of the starfish, Asterias rubens and Marthasterias glacialis. J. Mar. Biol. Ass. 1983;63:745–765. doi: 10.1017/S0025315400071198. [DOI] [Google Scholar]
  • 481.Falk-Petersen I-B. Breeding season and egg morphology of echinoderms in Balsfjorden, northern Norway. Sarsia. 1982;67:215–221. doi: 10.1080/00364827.1982.10421336. [DOI] [Google Scholar]
  • 482.Fish JD. Development, hatching and brood size in Bathyporeia pilosa and B. pelagica (Crustacea: Amphipoda) J. Mar. Biol. Ass. 1975;55:357–368. doi: 10.1017/S002531540001599X. [DOI] [Google Scholar]
  • 483.Dauvin J-C, Gentil F. Long-term changes in populations of subtidal bivalves (Abra alba and A. prismatica) from the Bay of Morlaix (Western English Channel) Marine Biology. 1989;103:63–73. doi: 10.1007/BF00391065. [DOI] [Google Scholar]
  • 484.Nott PL. Reproduction in Abra Alba (Wood) and Abra Tenuis (Montagu) (Tellinacea: Scrobiculariidae) J. Mar. Biol. Ass. 1980;60:465–479. doi: 10.1017/S0025315400028484. [DOI] [Google Scholar]
  • 485.Larsen JB, Frischer ME, Ockelmann KW, Rasmussen LJ, Hansen BW. Temporal occurrence of planktotrophic bivalve larvae identified morphologically and by single step nested multiplex PCR. Journal of Plankton Research. 2007;29:423–436. doi: 10.1093/plankt/fbm027. [DOI] [Google Scholar]
  • 486.Künitzer, A. Factors affecting the population dynamics of Amphiura filiformis (Echinodermata Ophiuroidea) and Mysella bidentata (Bivalvia Galeommatacea) in the North Sea. in Reproduction, genetics and distributions of marine organisms. 23rd European Marine Biology Symposium (eds. Ryland, J. S. & Tyler, P. A.) 395–406 (1989).
  • 487.Ockelmann KW, Muus K. The biology, ecology and behaviour of the Bivalve Mysella bidentata (Montagu) Ophelia. 1978;17:1–93. doi: 10.1080/00785326.1978.10425474. [DOI] [Google Scholar]
  • 488.Fiege D, Licher F, Mackie ASY. A partial review of the European Magelonidae (Annelida: Polychaeta): Magelona mirabilis redefined and M. johnstoni sp. nov. distinguished. J. Mar. Biol. Ass. 2000;80:215–234. doi: 10.1017/S0025315499001800. [DOI] [Google Scholar]
  • 489.Kamermans P. Similarity in food source and timing of feeding in deposit- and suspension-feeding bivalves. Mar. Ecol. Prog. Ser. 1994;104:63–75. doi: 10.3354/meps104063. [DOI] [Google Scholar]
  • 490.Strasser M. Mya arenaria — an ancient invader of the North Sea coast. Helgolander Meeresunters. 1998;52:309–324. doi: 10.1007/BF02908905. [DOI] [Google Scholar]
  • 491.Commito JA. Effects of Lunatia heros predation on the population dynamics of Mya arenaria and Macoma balthica in Maine, USA. Mar. Biol. 1982;69:187–193. doi: 10.1007/BF00396898. [DOI] [Google Scholar]
  • 492.Brousseau DJ. Spawning cycle, fecundity, and recruitment in a population of soft-shell clam, Mya arenaria, from Cape Ann, Massachusetts. Fishery Bulletin. 1978;76:155–166. [Google Scholar]
  • 493.Gilbert MA. Growth Rate, Longevity and Maximum Size of Macoma balthica (L.) The Biological Bulletin. 1973;145:119–126. doi: 10.2307/1540352. [DOI] [Google Scholar]
  • 494.Caddy JF. Maturation of gametes and spawning in macoma balthica (L.) Can. J. Zool. 1967;45:955–965. doi: 10.1139/z67-105. [DOI] [PubMed] [Google Scholar]
  • 495.Hough AR, Naylor E. Distribution and position maintenance behaviour of the estuarine mysid Neomysis integer. J. Mar. Biol. Ass. 1992;72:869–876. doi: 10.1017/S0025315400060100. [DOI] [Google Scholar]
  • 496.Orejas C, et al. Feeding ecology and trophic impact of the hydroid Obelia dichotoma in the Kongsfjorden (Spitsbergen, Arctic) Polar Biol. 2013;36:61–72. doi: 10.1007/s00300-012-1239-7. [DOI] [Google Scholar]
  • 497.Gili J-M, Hughes R. The Ecology of marine benthic hydroids. Oceanogr. Mar. Biol. Ann. Rev. 1995;33:351–426. [Google Scholar]
  • 498.Cornelius PFS. Evolution in leptolid life-cycles (Cnidaria: Hydroida) Journal of Natural History. 1990;24:579–594. doi: 10.1080/00222939000770391. [DOI] [Google Scholar]
  • 499.Faulkner GH. The early prophases of the first oocyte division as seen in life, in Obelia geniculata. Quart Jour Microscop Sri. 1929;73:225–242. [Google Scholar]
  • 500.Williams GA. Maintenance of zonation patterns in two species of flat periwinkle, Littorina obtusata and L. mariae. Hydrobiologia. 1995;309:143–150. doi: 10.1007/BF00014481. [DOI] [Google Scholar]
  • 501.Gendron RP. Habitat Selection and Migratory Behaviour of the Intertidal Gastropod Littorina littorea (L.) The Journal of Animal Ecology. 1977;46:79. doi: 10.2307/3948. [DOI] [Google Scholar]
  • 502.Matthiessen P, Waldock R, Thain JE, Waite ME, Scropehowe S. Changes in Periwinkle (Littorina littorea) Populations Following the Ban on TBT-Based Antifoulings on Small Boats in the United Kingdom. Ecotoxicology and Environmental Safety. 1995;30:180–194. doi: 10.1006/eesa.1995.1023. [DOI] [PubMed] [Google Scholar]
  • 503.Fretter, V. & Graham, A. The prosobranch molluscs of Britain and Denmark. V. Marine Littorinacea. J. Mollusc. Stud. August(Suppl. 7), 243–284 (1980).
  • 504.Trueman ER, Brand AR, Davis P. The dynamics of burrowing of some common littoral bivalves. J. Exp. Biol. 1966;44:469–492. doi: 10.1242/jeb.44.3.469. [DOI] [Google Scholar]
  • 505.Stephen AG. Notes on the Biology of Tellina tenuis da Costa. Journal of the Marine Biological Association of the United Kingdom. 1928;15:683–702. doi: 10.1017/S0025315400009590. [DOI] [Google Scholar]
  • 506.Barnett PRO. The effect of temperature on the growth of planktonic larvae of Tellina tenuis da Costa. Journal of Experimental Marine Biology and Ecology. 1985;89:1–10. doi: 10.1016/0022-0981(85)90078-4. [DOI] [Google Scholar]
  • 507.Trevallion A. Studies on Tellina tenuis Da Costa. III. Aspects of general biology and energy flow. Journal of Experimental Marine Biology and Ecology. 1971;7:95–122. doi: 10.1016/0022-0981(71)90006-2. [DOI] [Google Scholar]
  • 508.Oliver, P. & Morgan, P. J. A survey of the age structure of beach populations of Nephtys spp. in the British Isles. The basis of population fluctuations. Oceanologica Acta 141–145 (1983).
  • 509.Gentil F, Dauvin J-C, Ménard F. Reproductive biology of the polychaete Owenia fusiformis Delle Chiaje in the Bay of Seine (eastern English Channel) Journal of Experimental Marine Biology and Ecology. 1990;142:13–23. doi: 10.1016/0022-0981(90)90134-X. [DOI] [Google Scholar]
  • 510.Ansell AD. In situ activity of the sandy beach bivalve Donax vittatus (Bivalvia Donacidae) in relation to potential predation risks. Ethology Ecology & Evolution. 1994;6:43–53. doi: 10.1080/08927014.1994.9523007. [DOI] [Google Scholar]
  • 511.Ansell AD, Günther C-P, Burrows MT. Partial Emergence of the Bivalve Donax Vittatus in Response to Abrupt Changes in Light Intensity and before Spawning. J. Mar. Biol. Ass. 1998;78:669–672. doi: 10.1017/S0025315400041722. [DOI] [Google Scholar]
  • 512.Gerlach SA, Ekstrøm DK, Eckardt PB. Filter feeding in the hermit crab: Pagurus bernhardus. Oecologia. 1976;24:257–264. doi: 10.1007/BF00345477. [DOI] [PubMed] [Google Scholar]
  • 513.Bridger D, Bonner SJ, Briffa M. Individual quality and personality: bolder males are less fecund in the hermit crab Pagurus bernhardus. Proceedings of the Royal Society B: Biological Sciences. 2015;282:20142492. doi: 10.1098/rspb.2014.2492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 514.Pratt MC. Living where the flow is right: How flow affects feeding in bryozoans. Integrative and Comparative Biology. 2008;48:808–822. doi: 10.1093/icb/icn052. [DOI] [PubMed] [Google Scholar]
  • 515.Emson RH. The feeding and consequent role of Eulalia viridis (O. F. Müller) (Polychaeta) in intertidal communities. Journal of the Marine Biological Association of the United Kingdom. 1977;57:93–96. doi: 10.1017/S0025315400021251. [DOI] [Google Scholar]
  • 516.Jones DA. Population Densities and Breeding in Eurydice Pulchra and Eurydice Affinis in Britain. Journal of the Marine Biological Association of the United Kingdom. 1970;50:635–655. doi: 10.1017/S0025315400004926. [DOI] [Google Scholar]
  • 517.Beukema JJ. The efficiency of the Van Veen grab compared with the Reineck box sampler. ICES Journal of Marine Science. 1974;35:319–327. doi: 10.1093/icesjms/35.3.319. [DOI] [Google Scholar]
  • 518.Sebens KP, Koehl MAR. Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Marine Biology. 1984;81:255–271. doi: 10.1007/BF00393220. [DOI] [Google Scholar]
  • 519.Morvan C, Ansell AD. Stereological methods applied to reproductive cycle of Tapes rhomboides. Mar. Biol. 1988;97:355–364. doi: 10.1007/BF00397766. [DOI] [Google Scholar]
  • 520.Duval DM. The biology of Petricola pholadiformis Lamarck (Lammellibranchiata: Petricolidae) Proceedings of the Malacological Society. 1963;35:89–100. [Google Scholar]
  • 521.Zühlke R, Blome D, Van Bernem KH, Dittmann S. Effects of the tube-building polychaeteLanice conchilega (Pallas) on benthic macrofauna and nematodes in an intertidal sandflat. Senckenbergiana maritima. 1998;29:131–138. doi: 10.1007/BF03043951. [DOI] [Google Scholar]
  • 522.Usero J, González-Regalado E, Gracia I. Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of Southern Spain. Environment International. 1997;23:291–298. doi: 10.1016/S0160-4120(97)00030-5. [DOI] [Google Scholar]
  • 523.Rasmussen E. Systematics and ecology of the Isefjord marine fauna (Denmark) Ophelia. 1973;11:1–507. doi: 10.1080/00785326.1973.10430115. [DOI] [Google Scholar]
  • 524.Wedi SE, Dunn DF. Gametogenesis and reproductive periodicity of the subtidal sea anemone urticina lofotensis (coelenterata: actiniaria) in california. Biol Bull. 1983;165:458–472. doi: 10.2307/1541212. [DOI] [PubMed] [Google Scholar]
  • 525.Chia FS, Spaulding JG. Development and juvenile growth of the sea anemone, Tealia crassicornis. Biol Bull. 1972;142:206–218. doi: 10.2307/1540225. [DOI] [PubMed] [Google Scholar]
  • 526.Cava-Solé AM, Thorpe JP, Todd CD. High genetic similarity between geographically distant populations in a sea anemone with low dispersal capabilities. J. Mar. Biol. Ass. 1994;74:895–902. doi: 10.1017/S0025315400090123. [DOI] [Google Scholar]
  • 527.Fernandez-Leborans G, Gabilondo R. Hydrozoan and protozoan epibionts on two decapod species, Liocarcinus depurator (Linnaeus, 1758) and Pilumnus hirtellus (Linnaeus, 1761), from Scotland. Zoologischer Anzeiger - A Journal of Comparative Zoology. 2005;244:59–72. doi: 10.1016/j.jcz.2005.04.004. [DOI] [Google Scholar]
  • 528.Holtmann, S. E. Atlas of the Zoobenthos of the dutch continental shelf. (Ministry of Transport, Public Works and Water Management, North Sea Directorate, 1996).
  • 529.Ruppert, E. E., Fox, R. S. & Barnes, R. D. Invertebrate zoology: a functional evolutionary approach. (Thomson-Brooks/Cole, 2004).
  • 530.Fish, J. D. & Fish, S. A student’s guide to the seashore. (Cambridge University Press, 2011).
  • 531.Marine Ecological Surveys Limited. Marine Macrofauna Genus Trait Handbook. (Marine Ecological Surveys Limited, 2008).
  • 532.Treatise on zoology. Volume 5: The crustacea/with contributions by J. E. de Assis [und 6 andere]; English translation by J.C. von Vaupel Klein and F.R. Schram. (Brill, 2015).
  • 533.Brusca, R. C. & Brusca, G. J. Invertebrates. (Sinauer Associates, 2003).
  • 534.Handbook of the marine fauna of north-west Europe. (Oxford University Press, 2017).
  • 535.Moen, F. E., Svensen, E. & Bellamy, D. Marine fish & invertebrates of Northern Europe. (Aqua Press, 2004).
  • 536.Biology and palaeobiology of bryozoans: proceedings of the 9th International Bryozoology Conference. (Olsen, 1994).
  • 537.Fairbairn, D. J. Odd couples: extraordinary differences between the sexes in the animal kingdom. (Princeton University Press, 2013).
  • 538.Hartmann-Schröder, G. Annelida, borstenwürmer, polychaeta. (VEB Gustav Fischer Verlag, 1971).
  • 539.Kristensen, E. & Kostka, J. E. Macrofaunal burrows and irrigation in marine sediment: Microbiological and biogeochemical interactions. in Coastal and Estuarine Studies (eds. Kristensen, E., Haese, R. R. & Kostka, J. E.) vol. 60, 125–157 (American Geophysical Union, 2005).
  • 540.Barnes, R. D. Invertebrate Zoology. (Saunders, 1983).
  • 541.Gorzelak, P. Functional Micromorphology of the Echinoderm Skeleton. 10.1017/9781108893886 (Cambridge University Press, 2021).
  • 542.Lambert, P. Sea stars of British Columbia, Southeast Alaska, and Puget Sound. (UBC Press, 2000).
  • 543.Ruppert, E. E. & Barnes, R. D. Invertebrate zoology. (Saunders College Pub, 1994).
  • 544.Schelpdieren van het Nederlandse Noordzeegebied. Ecologische atlas van de mariene weekdieren (Mollusca). (Tirion Uitgevers en Stichting Anemoon, 2013).
  • 545.Hughes, R. N. A functional biology of marine gastropods. (Johns Hopkins University Press, 1986).
  • 546.Heller, J. Sea snails: a natural history. (Springer Berlin Heidelberg, 2015).
  • 547.Rouse, G. W. & Pleijel, F. Polychaetes. (Oxford University Press, 2001).
  • 548.Illustrated keys to free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. (Alaska Sea Grant College Program, University of Alaska Fairbanks, 2009).
  • 549.Honkoop, P. J. C., Beukema, J. J. & Kwast, D. Winter temperature and reproductive success in shell-fish in the Dutch Wadden Sea. in Studies in Environmental Science vol. 65, 831–834 (Elsevier, 1995).
  • 550.Reproductive biology and phylogeny of Annelida. (Science Publishers, 2006).
  • 551.Handbook of marine model organisms in experimental biology: established and emerging. (CRC Press, 2022).
  • 552.Rehm, P. Cumacea (Crustacea; Peracarida)of the Antarctic shelf - diversity,biogeography, and phylogeny. (Universität Bremen, 2007).
  • 553.Hessler, R. R. Evolution of Arthropod Locomotion: A Crustacean Model. in Locomotion and Energetics in Arthropods (eds. Herreid, C. F. & Fourtner, C. R.) 9–30, 10.1007/978-1-4684-4064-5_2 (Springer US, 1981).
  • 554.Giangrande, A. Polychaete reproductive patterns, life cycles and life histories: an overview. in Oceanography And Marine Biology (eds. Gibson, R. N., Gibson, R. N. & Barnes, M.) vol. 35, 102 (CRC Press, 1997).
  • 555.Beesley, P. L. Mollusca: the southern synthesis. (CSIRO, 1998).
  • 556.Fauvel, P. Polychètes errantes. 488 (1923).
  • 557.Barnes, R. S. K. The brackish-water fauna of northwestern Europe: an identification guide to brackish-water habitats, ecology, and macrofauna for field workers, naturalists, and students. (Cambridge University Press, 1994).
  • 558.Lincoln, R. J. British marine amphipoda, Gammaridea. (British Museum (Natural History), 1979).
  • 559.The Annelida; Pt. 1. Oligochaeta and Polychaeta: Phyllodicida (Phyllodocidae to Paralacydoniidae). (Santa Barbara Museum of Natural History, 1997).
  • 560.Pardal, M. Â., Marques, J. C., Lillebo, A. I. & Flindt, A. I. Impact of eutrophication on amphipods Melita palmata and Ampithoe valida in the Mondego estuary. in Aquatic ecology of the Mondego River basin global importance of local experience 457–472. 10.14195/978-989-26-0336-0_30 (Imprensa da Universidade de Coimbra, 2002).
  • 561.Zettler, M. L. & Zettler, A. Marine and freshwater Amphipoda from the Baltic Sea and adjacent territories. (ConchBooks, 2017).
  • 562.Oregon Estuarine Invertebrates: Rudy’s Illustrated Guide to Common Species. (University of Oregon Libraries and Oregon Institute of Marine Biology, 2016).
  • 563.Golikov, A. Class Gastropoda. in Molluscs of the White Sea (eds. Starobogatov, Y. & Naumov, A.) vol. 151, 41–148 (izdavaemye zoologicheskin institutom Akademii nauk SSSR, 1987).
  • 564.M’Intosh, W. C., Ford, G. H., McIntosh, R. & Walker, A. H. A monograph of the British marine annelids. 10.5962/bhl.title.54725 (The Ray society, 1873).
  • 565.Hiebert, T. C. Nephtys caeca. in Oregon Estuarine Invertebrates: Rudys’ Illustrated Guide to Common Species (eds. Hiebert, T. C., Butler, B. A. & Shanks, A. L.) (University of Oregon Libraries and Oregon Institute of Marine Biology, 2016).
  • 566.The invertebrates: a synthesis. (Blackwell Pub, 2001).
  • 567.Barnes, R. D. Invertebrate zoology. (Saunders College, 1980).
  • 568.Gosling, E. M. Marine bivalve molluscs. (Wiley Blackwell, 2015).
  • 569.Hayward, P. J. & Ryland, J. S. Cheilostomatous bryozoa. 1: Aeteoidea - Cribrilinoidea. (Field Studies Council, 1998).
  • 570.Simon, J. L. Reproduction and larval development of the spionid polychaete spio setosa, verrill. (University of New Hampshire, 1963).
  • 571.Margaret, L. Polydora and Dipolydora (Polychaeta Spionidae) of estuaries and bays of subtropical eastern Australia: a review and morphometric investigation of their taxonomy and distribution. (Southern Cross University, 2008).
  • 572.Okamura, B. Seasonal changes in zooid size and feeding activity in epifaunal colonies of Electra pilosa. in (ed. June, R. P.) 197–203 (Western Washington University, 1987).
  • 573.Buchsbaum, R. Animals without backbones. (University of Chicago Press, 1987).
  • 574.Smaldon, G. British coastal shrimps and prawns: keys and notes for the identification of the species. (Published for the Linnean Society of London and the Estuarine and Brackish-Water Sciences Association by Academic Press, 1979).
  • 575.DeBlauwe, H. Mosdiertjes van de Zuidelijke Bocht van de Noordzee: determinatiewerk voor België en Nederland. (Vlaams Instituut voor de Zee, 2009).
  • 576.Curtis, M. A. Population dynamics, life cycles and production of marine benthic polychaetes near Godhavn, Greenland. (McGill University, 1973).
  • 577.Böggemann, M. Revision of the Glyceridae Grube 1850 (Annelida:Polychaeta). (E. Schweizerbart, 2002).
  • 578.Di Camillo, C. G. et al. Hydroids (Cnidaria, Hydrozoa): A Neglected Component of Animal Forests. in Marine Animal Forests (eds. Rossi, S., Bramanti, L., Gori, A. & Orejas, C.) 397–427, 10.1007/978-3-319-21012-4_11 (Springer International Publishing, 2017).
  • 579.Holthe, T. Polychaeta terebellomorpha. (Norwegian University Press, 1986).
  • 580.The Marine fauna of the British Isles and North-West Europe. (Clarendon Press; Oxford University Press, 1990).
  • 581.Volbehr, U. & Rachor, E. The association between the caprellid Pariambus typicus Krøyer (Crustacea, Amphipoda) and ophiuroids. in Interactions and Adaptation Strategies of Marine Organisms (eds. Naumov, A. D., Hummel, H., Sukhotin, A. A. & Ryland, J. S.) 71–76, 10.1007/978-94-017-1907-0_8 (Springer Netherlands, 1997).
  • 582.Gaspar, M., Barracha, I., Carvalho, S. & Vasconcelos, P. Clam Fisheries Worldwide: Main Species, Harvesting Methods and Fishing Impacts. in Clam Fisheries and Aquaculture (ed. González, F. C.) 291–327 (Nova Science Publishers, 2012).
  • 583.Kruse, I. & Buhs, F. Preying at the edge of the sea: the nemertine Tetrastemma melanocephalum and its amphipod prey on high intertidal sandflats. in Life at Interfaces and Under Extreme Conditions (eds. Liebezeit, G., Dittmann, S. & Kröncke, I.) 43–55, 10.1007/978-94-011-4148-2_4 (Springer Netherlands, 2000).
  • 584.Cohen, A. N. Cryptosula pallasiana (Moll, 1803). in The Exotics Guide: Non-native Marine Species of the North American Pacific Coast (2011).
  • 585.Biology of bryozoans. (Academic Press, 1977).
  • 586.Arnaud, F. & Bamber, R. N. The Biology of Pycnogonida. in Advances in Marine Biology vol. 24, 1–96 (Elsevier, 1988).
  • 587.Flores, A. A. V. & Paula, J. Intertidal distribution and species composition of brachyuran crabs at two rocky shores in Central Portugal. in Advances in Decapod Crustacean Research (eds. Paula, J. P. M., Flores, A. A. V. & Fransen, C. H. J. M.) 171–177, 10.1007/978-94-017-0645-2_18 (Springer Netherlands, 2001).
  • 588.Olive, P. J. W. Growth Lines in Polychaete Jaws (Teeth). in Skeletal Growth of Aquatic Organisms (eds. Rhoads, D. C. & Lutz, R. A.) 561–592, 10.1007/978-1-4899-4995-0_17 (Springer US, 1980).
  • 589.Reed, C. G. Bryozoa. in Reproduction of Marine Invertebrates (eds. Giese, A. C., Pearse, J. S. & Pearse, V. B.) vol. VI. Echinoderms and Lophophorates 85–245 (Boxwoord Press, Pacific Grove, 1991).
  • 590.Schäfer, W. Ecology and Palaeoecology of Marine Environments. (Oliver and Boyd, 1972).
  • 591.Dame, R. F. Ecology of marine bivalves: an ecosystem approach. (CRC press, 1996).
  • 592.Cazaux, C. Recherches sur l’écologie et le développement larvaires des Polychètes de la région d’Arcachon. Etude morphologique du développement larvaire d’Annélides Polychètes (Bassin d’Arcachon). (Universite de Bordeaux; Faculte des Sciences, 1970).
  • 593.De Ridder, C. & Saucède, T. Echinocardium cordatum. in Developments in Aquaculture and Fisheries Science vol. 43, 337–357 (Elsevier, 2020).
  • 594.Naylor, E. E. British marine isopods: keys and notes for the identification of the species. (Academic Press, 1978).
  • 595.Buhr, K.-J. & Winter, J. E. Distribution and maintenance of a lanice conchilega association in the weser estuary (frg), with special reference to the suspension—feeding behaviour of lanice conchilega. in Biology of Benthic Organisms 101–113, 10.1016/B978-0-08-021378-1.50017-8 (Elsevier, 1977).
  • 596.The ecology of rocky coasts: essays presented to J(ack) R. Lewis. (Hodder and Stoughton, 1985).
  • 597.Marine Biological Association. Plymouth Marine Fauna. (Marine Biological Association of the United Kingdom, 1957).
  • 598.Pizzolla, P. F. Scrobicularia plana Peppery furrow shell. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2002).
  • 599.Ballerstedt, S. Scoloplos armiger Armoured bristleworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2005).
  • 600.Tillin, H. M. Scolelepis spp. in littoral mobile sand. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2018).
  • 601.De-Bastos, E. S. R. & Hill, J. Polydora sp. tubes on moderately exposed sublittoral soft rock. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 602.Hill, J. M. Polydora ciliata A bristleworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 603.Jackson, A. Peringia ulvae Laver spire shell. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2000).
  • 604.Neal, K. J. Palaemon elegans Rockpool prawn. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 605.Tyler-Walters, H. Mytilus edulis Common mussel. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 606.De-Bastos, E. S. R. Levinsenia gracilis and Heteromastus filiformis in offshore circalittoral mud and sandy mud. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 607.Budd, G. C. Hediste diversicolor Ragworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 608.Budd, G. C. Gammarus salinus A gammarid shrimp. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2002).
  • 609.Barnes, M. K. S. Diogenes pugilator Roux’s hermit crab. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 610.Rayment, W. J. Crepidula fornicata Slipper limpet. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 611.Neal, K. J. Crangon crangon Brown shrimp. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 612.Neal, K. J. & Avant, P. Corophium volutator European mud scud. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2006).
  • 613.Tyler-Walters, H. & Ballerstedt, S. Conopeum reticulum An encrusting bryozoan. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2005).
  • 614.Tillin, H. M. & Marshall, C. E. Cirratulids and Cerastoderma edule in littoral mixed sediment. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 615.White, N. Cerastoderma glaucum Lagoon cockle. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2002).
  • 616.Tyler-Walters, H. Cerastoderma edule Common cockle. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 617.Tyler-Walters, H. Siphonoecetes, Nephtyidae polychaetes and venerid bivalves in circalittoral sand. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2022).
  • 618.Neal, K. J. & Pizzolla, P. F. Carcinus maenas Common shore crab. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 619.Tillin, H. M. Capitella capitata in enriched sublittoral muddy sediments. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 620.MarLIN. BIOTIC - Biological Traits Information Catalogue. Marine Life Information Network. (Marine Biological Association of the United Kingdom, 2006).
  • 621.Neal, K. J. & Wilson, E. Cancer pagurus Edible crab. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 622.Ager, O. E. D. Buccinum undatum Common whelk. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 623.Fauvel, P. Polychètes sédentaires. 494 (1927).
  • 624.Ballerstedt, S. Barnea candida White piddock. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2006).
  • 625.White, N. Balanus crenatus Wrinkled barnacle. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2004).
  • 626.Avant, P. Austrominius modestus Modest barnacle. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 627.Tyler-Walters, H. Arenicola marina Blow lug. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 628.Rayment, W. J. Aphelochaeta marioni A bristleworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 629.Budd, G. C. Alcyonium digitatum Dead man’s fingers. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 630.Macrobenthos of the North Sea. (https://linnaeus.naturalis.nl/).
  • 631.Budd, G. C. Asterias rubens Common starfish. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 632.Budd, G. C. & Curtis, L. Bathyporeia pelagica A sand digger shrimp. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 633.Budd, G. C. Abra alba White furrow shell. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 634.FAO. Buccinum undatum Linneaus, 1758. (2023).
  • 635.De-Bastos, E. S. R. Kurtiella bidentata and Abra spp. in infralittoral sandy mud. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 636.Tyler-Walters, H. Mya arenaria Sand gaper. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2003).
  • 637.Budd, G. C. & Rayment, W. J. Macoma balthica Baltic tellin. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2001).
  • 638.De-Bastos, E. & Marshall, C. E. Kurtiella bidentata and Thyasira spp. in circalittoral muddy mixed sediment. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 639.Avant, P. Pygospio elegans A bristleworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2005).
  • 640.Budd, G. C. Neomysis integer An opossum shrimp. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 641.Richard, S. Obelia dichotoma Thin-walled obelia. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 642.Wilson, E. Obelia bidentata Double-toothed sea fir. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2002).
  • 643.Tyler-Walters, H. Obelia longissima A sea fir. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2003).
  • 644.Pizzolla, P. F. Littorina obtusata Common flat periwinkle. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 645.Jackson, A. Littorina littorea Common periwinkle. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 646.Carter, M. C. Macomangulus tenuis Thin tellin. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2005).
  • 647.Richard, S. Ophelia borealis A bristleworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 648.Tillin, H. M. & Garrard, S. M. Nephtys cirrosa and Bathyporeia spp. in infralittoral sand. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2022).
  • 649.Budd, G. C. & Hughes, J. R. Nephtys hombergii A catworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2005).
  • 650.Neal, K. J. & Avant, P. Owenia fusiformis A tubeworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 651.Farrell, C. Donax vittatus Banded wedge shell. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 652.Hill, J. M. Echinocardium cordatum Sea potato. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 653.Wilson, E. Pagurus bernhardus Bernhard’s hermit crab. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 654.Ballerstedt, S. Einhornia crustulenta A sea mat. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2006).
  • 655.Tyler-Walters, H. Cordylophora caspia and Einhornia crustulentaon reduced salinity infralittoral rock. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2002).
  • 656.Tyler-Walters, H. Electra pilosa Thorny sea mat. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2005).
  • 657.Pizzolla, P. F. & Tyler-Walters, H. Eulalia viridis Green-leaf worm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 658.Budd, G. C. Eurydice pulchra Speckled sea louse. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 659.Rayment, W. J. Fabulina fabula Bean-like tellin. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 660.Hiscock, K., Tyler-Walters, H. & Jones, H. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. (2002).
  • 661.Klawe, W. L. & Dickie, L. M. Biology of the bloodworm, Glycera dibranchiata Ehlers, and its relation to the hloodworm fishery of the Maritime Provinces. (1957).
  • 662.Tyler-Walters, H. Hartlaubella gelatinosa A sea fir. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2002).
  • 663.Tyler-Walters, H. Hartlaubella gelatinosa and Conopeum reticulum on low salinity infralittoral mixed substrata. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2015).
  • 664.Vader, W. Verspreiding en biologie van haustorius arenarius, de zandvlokreeft, in nederland (crustacea, amphipoda). (1969).
  • 665.Tillin, H. M. & Ashley, M. Polychaetes, including Paraonis fulgens, in littoral fine sand. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 666.Ager, O. E. D. Lanice conchilega Sand mason. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 667.Hosie, A. M. Lekanesphaera rugicauda A sea slater. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2009).
  • 668.FAO. Magallana gigas. https://www.fao.org/fishery/en/culturedspecies/crassostrea_gigas_ (2023).
  • 669.Hughes, J. R. Magallana gigas Pacific oyster. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 670.Rayment, W. J. Magelona mirabilis A shovelhead worm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 671.Fish Vet Group. Benthic report. https://www.sepa.org.uk/media/421164/1003268_benthic_report.pdf (2018).
  • 672.Tillin, H. M. Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2022).
  • 673.Readman, J. A. J. & Rayment, W. J. Crepidula fornicata and Mediomastus fragilis in variable salinity infralittoral mixed sediment. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 674.Hiscock, K. & Wilson, E. Metridium senile Plumose anemone. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 675.Budd, G. C. Petricolaria pholadiformis American piddock. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2005).
  • 676.Carter, M. C. Malmgrenia lunulata A scale worm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2003).
  • 677.Rayment, W. J. Venerupis corrugata Pullet carpet shell. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2007).
  • 678.Carter, M. C. Ruditapes decussatus Chequered carpet shell. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2003).
  • 679.Jackson, A. & Hiscock, K. Urticina felina Dahlia anemone. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 680.Ashley, M. & Marshall, C. Hesionura elongata and Microphthalmus similis with other interstitial polychaetes in infralittoral mobile coarse sand. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2022).
  • 681.Readman, J. A. J., Tillin, H. M. & Marshall, C. E. Faunal crusts on wave-surged littoral cave walls. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 682.Skewes, M. Pilumnus hirtellus Bristly crab. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 683.Tillin, H. M. Moerella spp. with venerid bivalves in infralittoral gravelly sand. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2016).
  • 684.Avant, P. Tellimya ferruginosa Rusty Montagu shell. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 685.Tillin, H. M. & Budd, G. C. Ceramium sp. and piddocks on eulittoral fossilised peat. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 686.Richard, S. Bathyporeia elegans A sand digger shrimp. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 687.Ager, O. E. D. Spiophanes bombyx A bristleworm. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2005).
  • 688.Ashley, M. Nephtys cirrosa - dominated littoral fine sand. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2020).
  • 689.White, N. Semibalanus balanoides Common rock barnacle. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) (Marine Biological Association of the United Kingdom, 2008).
  • 690.Picton, B. E. & Morrow, C. C. Sagartia troglodytes (Price in Johnston, 1847). in Encyclopedia of Marine Life of Britain and Ireland (2016).
  • 691.Degen R, Faulwetter S. The Arctic Traits Database – a repository of Arctic benthic invertebrate traits. Earth Syst. Sci. Data. 2019;11:301–322. doi: 10.5194/essd-11-301-2019. [DOI] [Google Scholar]
  • 692.Faulwetter S, et al. Polytraits: A database on biological traits of marine polychaetes. BDJ. 2014;2:e1024. doi: 10.3897/BDJ.2.e1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 693.Palomares, M. L. D. & Pauly, D. SeaLifeBase. (2022).
  • 694.Macdonald, T. A., Burd, B. J., Macdonald, V. I. & Van Roodselaar, A. Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia. 63 (2010).
  • 695.Beauchard O, Mestdagh S, Koop L, Ysebaert T, Herman P. Benthic synecology in a soft sediment shelf: habitat contrasts and assembly rules of life strategies. Mar. Ecol. Prog. Ser. 2022;682:31–50. doi: 10.3354/meps13928. [DOI] [Google Scholar]
  • 696.National Biodiversity Network (NBN) Trust. National Biodiversity Network (NBN) Atlas. (The National Biodiversity, 2023).
  • 697.Fofonoff PW, Ruiz GM, Steves B, Simkanin C, Carlton JT. 2018. National Exotic Marine and Estuarine Species Information System. http://invasions.si.edu/nemesis
  • 698.ArcOD. Polychaeta. in Arctic Ocean Diversity (ArcOD) (http://www.iopan.gda.pl/projects/Polychaeta, 2023).
  • 699.Grabowski, M. Palaemon elegans (rock shrimp). CABI CompendiumCABI Compendium, 70617 (2022).
  • 700.Scouppe, C., Frédéric, Z. & Müller, Y. Scrobicularia plana (da Costa, 1778). in DORIS (2021).
  • 701.Duenas, M. A. Hemigrapsus takanoi (brush-clawed shore crab). CABI CompendiumCABI Compendium, 109143 (2022).
  • 702.Nygren, A. Harmothoe imbricata (Linnaeus, 1767). (www.artsdatabanken.no/Pages/313090, 2023).
  • 703.Shojaei MG, Brey T, Gutow L, Dannheim J. 2013. Fuzzy coding of biological traits of macrobenthic species in the North Sea, Table 1. PANGAEA. [DOI]
  • 704.Zenetos, A. Petricolaria pholadiformis (false angel wing). CABI CompendiumCABI Compendium, 108908 (2022).
  • 705.VLIZ Alien Species Consortium. Petricolaria pholadiformis – Amerikaanse boormossel. in Niet-inheemse soorten van het Belgisch deel van de Noordzee en aanpalende estuaria anno 2020 7 (Vlaams Instituut voor de Zee (VLIZ), 2020).
  • 706.Nygren, A. Pholoe baltica (Ørsted, 1843). (www.artsdatabanken.no/Pages/313089, 2023).
  • 707.Chevenet F, Dolédec S, Chessel D. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology. 1994;31:295–309. doi: 10.1111/j.1365-2427.1994.tb01742.x. [DOI] [Google Scholar]
  • 708.Frid CLJ, Paramor OAL, Brockington S, Bremner J. Incorporating ecological functioning into the designation and management of marine protected areas. Hydrobiologia. 2008;606:69–79. doi: 10.1007/s10750-008-9343-y. [DOI] [Google Scholar]
  • 709.Degen R, et al. Trait-based approaches in rapidly changing ecosystems: A roadmap to the future polar oceans. Ecological Indicators. 2018;91:722–736. doi: 10.1016/j.ecolind.2018.04.050. [DOI] [Google Scholar]
  • 710.Bremner J, Rogers SI, Frid CLJ. Matching biological traits to environmental conditions in marine benthic ecosystems. Journal of Marine Systems. 2006;60:302–316. doi: 10.1016/j.jmarsys.2006.02.004. [DOI] [Google Scholar]
  • 711.Donadi S, et al. Multi-scale habitat modification by coexisting ecosystem engineers drives spatial separation of macrobenthic functional groups. Oikos. 2015;124:1502–1510. doi: 10.1111/oik.02100. [DOI] [Google Scholar]
  • 712.R Core Team. R: A Language and Environment for Statistical Computing. (2022).
  • 713.Chang, W. et al. shiny: Web Application Framework for R. (2022).
  • 714.Chang, W. & Borges Ribeiro, B. shinydashboard: Create Dashboards with ‘Shiny’. (2021).
  • 715.Xie, Y., Cheng, J. & Tan, X. DT: A Wrapper of the JavaScript Library ‘DataTables’. (2023).
  • 716.François F, Poggiale J-C, Durbec J-P, Stora G. A New Approach for the Modelling of Sediment Reworking Induced by a Macrobenthic Community. Acta Biotheor. 1997;45:295–319. doi: 10.1023/A:1000636109604. [DOI] [Google Scholar]
  • 717.Gardner LR, Sharma P, Moore WS. A regeneration model for the effect of bioturbation by fiddler crabs on 210Pb profiles in salt marsh sediments. Journal of Environmental Radioactivity. 1987;5:25–36. doi: 10.1016/0265-931X(87)90042-7. [DOI] [Google Scholar]
  • 718.Meysman FJR, Middelburg JJ, Heip CHR. Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology & Evolution. 2006;21:688–695. doi: 10.1016/j.tree.2006.08.002. [DOI] [PubMed] [Google Scholar]
  • 719.Solan M, et al. Extinction and Ecosystem Function in the Marine Benthos. Science. 2004;306:1177–1180. doi: 10.1126/science.1103960. [DOI] [PubMed] [Google Scholar]
  • 720.Reise K. Sediment mediated species interactions in coastal waters. Journal of Sea Research. 2002;48:127–141. doi: 10.1016/S1385-1101(02)00150-8. [DOI] [Google Scholar]
  • 721.Costello MJ, et al. Biological and ecological traits of marine species. PeerJ. 2015;3:e1201. doi: 10.7717/peerj.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 722.Gerlach S, Hahn A, Schrage M. Size spectra of benthic biomass and metabolism. Mar. Ecol. Prog. Ser. 1985;26:161–173. doi: 10.3354/meps026161. [DOI] [Google Scholar]
  • 723.Duplisea DE, Jennings S, Warr KJ, Dinmore TA. A size-based model of the impacts of bottom trawling on benthic community structure. Can. J. Fish. Aquat. Sci. 2002;59:1785–1795. doi: 10.1139/f02-148. [DOI] [Google Scholar]
  • 724.Hiddink JG, et al. Assessing bottom trawling impacts based on the longevity of benthic invertebrates. J Appl Ecol. 2019;56:1075–1084. doi: 10.1111/1365-2664.13278. [DOI] [Google Scholar]
  • 725.Tiano JC, et al. Experimental bottom trawling finds resilience in large-bodied infauna but vulnerability for epifauna and juveniles in the Frisian Front. Marine Environmental Research. 2020;159:104964. doi: 10.1016/j.marenvres.2020.104964. [DOI] [PubMed] [Google Scholar]
  • 726.Merz RA. Textures and traction: how tube-dwelling polychaetes get a leg up. Invertebrate Biology. 2015;134:61–77. doi: 10.1111/ivb.12079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 727.Giangrande A. Polychaete reproductive patterns, life cycle and life histories: an overview. Oceanography and Marine Biology. 1997;35:323–386. [Google Scholar]
  • 728.Giangrande A, Geraci S, Belmonte G. Life-cycle and life-history diversity in marine invertebrates and the implications in community dynamics. Oceanography and Marine Biology: an Annual Review. 1994;32:305–333. [Google Scholar]
  • 729.Gillespie JM, McClintock JB. Brooding in echinoderms: How can modern experimental techniques add to our historical perspective? Journal of Experimental Marine Biology and Ecology. 2007;342:191–201. doi: 10.1016/j.jembe.2006.10.055. [DOI] [Google Scholar]
  • 730.Pechenik JA. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series. 1999;177:269–297. doi: 10.3354/meps177269. [DOI] [Google Scholar]
  • 731.Byrne M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: An Annual Review. 2011;49:1–42. [Google Scholar]
  • 732.Byrne M, Przeslawski R. Multistressor Impacts of Warming and Acidification of the Ocean on Marine Invertebrates’ Life Histories. Integrative and Comparative Biology. 2013;53:582–596. doi: 10.1093/icb/ict049. [DOI] [PubMed] [Google Scholar]
  • 733.Kim HH, et al. Effects of disturbance timing on community recovery in an intertidal habitat of a Korean rocky shore. Algae. 2017;32:325–336. doi: 10.4490/algae.2017.32.12.7. [DOI] [Google Scholar]
  • 734.Dray S, Dufour A. The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software. 2007;22:1–20. doi: 10.18637/jss.v022.i04. [DOI] [Google Scholar]
  • 735.Meijer KJ, 2023. Replication Data for: The seafloor from a trait perspective: A comprehensive life history dataset of soft sediment macrozoobenthos. DataverseNL. [DOI] [PubMed]
  • 736.Ahyong, S. et al. World register of marine species (WoRMS). (2022).
  • 737.Tyler EHM, et al. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Global Ecology and Biogeography. 2012;21:922–934. doi: 10.1111/j.1466-8238.2011.00726.x. [DOI] [Google Scholar]
  • 738.Pakeman RJ. Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods in Ecology and Evolution. 2014;5:9–15. doi: 10.1111/2041-210X.12136. [DOI] [Google Scholar]
  • 739.Thorson JT, et al. Identifying direct and indirect associations among traits by merging phylogenetic comparative methods and structural equation models. Methods in Ecology and Evolution. 2023;14:1259–1275. doi: 10.1111/2041-210X.14076. [DOI] [Google Scholar]
  • 740.Johnson TF, Isaac NJB, Paviolo A, González-Suárez M. Handling missing values in trait data. Global Ecology and Biogeography. 2021;30:51–62. doi: 10.1111/geb.13185. [DOI] [Google Scholar]
  • 741.Kleyer M, et al. Assessing species and community functional responses to environmental gradients: which multivariate methods? Journal of Vegetation Science. 2012;23:805–821. doi: 10.1111/j.1654-1103.2012.01402.x. [DOI] [Google Scholar]
  • 742.RStudio Team. RStudio: Integrated Development for R. (2023).

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Citations

  1. Fofonoff PW, Ruiz GM, Steves B, Simkanin C, Carlton JT. 2018. National Exotic Marine and Estuarine Species Information System. http://invasions.si.edu/nemesis
  2. Shojaei MG, Brey T, Gutow L, Dannheim J. 2013. Fuzzy coding of biological traits of macrobenthic species in the North Sea, Table 1. PANGAEA. [DOI]
  3. Meijer KJ, 2023. Replication Data for: The seafloor from a trait perspective: A comprehensive life history dataset of soft sediment macrozoobenthos. DataverseNL. [DOI] [PubMed]

Supplementary Materials

41597_2023_2728_MOESM1_ESM.docx (20.6KB, docx)

Supplementary information to: The seafloor from a trait perspective. A comprehensive life history dataset of soft sediment macrozoobenthos.

Data Availability Statement

Code used to produce the graphs is available in the dataverseNL (DANS) repository alongside the static version of the dataset through 10.34894/Z43J6I. Figures and analysis were done using Rstudio version 2023.03.0742 and R version 4.2.2712.


Articles from Scientific Data are provided here courtesy of Nature Publishing Group

RESOURCES