Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Sep;70(3):671–676. doi: 10.1104/pp.70.3.671

Diurnal Pattern of Translocation and Carbohydrate Metabolism in Source Leaves of Beta vulgaris L. 1

Bernadette R Fondy 1,2, Donald R Geiger 1,2
PMCID: PMC1065750  PMID: 16662555

Abstract

Transitions in carbohydrate metabolism and translocation rate were studied for evidence of control of export by the sugar beet (Beta vulgaris L. Klein E.) source leaf. Steady-state labeling was carried out for two consecutive 14-hour light periods and various quantities related to translocation were measured throughout two 24-hour periods. Starch accumulation following illumination was delayed. Near the end of the light period, starch stopped accumulating, whereas photosynthesis rate and sucrose level remained unchanged. At the beginning of the dark period there was a 75-minute delay before starch was mobilized. The rate of import to the developing sink leaves at night was similar to that during the day, whereas export decreased considerably at night.

Starch accumulation and degradation seemed to be initiated in response to the level of illumination. Cessation of starch accumulation before the end of the light period was initiated endogenously. Exogenous control appeared to be mediated by the level of sucrose in the source leaf while endogenous control seemed to be keyed to photoperiod or photosynthetic duration.

Full text

PDF
671

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Copeland L., Preiss J. Purification of Spinach Leaf ADPglucose Pyrophosphorylase. Plant Physiol. 1981 Nov;68(5):996–1001. doi: 10.1104/pp.68.5.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fondy B. R., Geiger D. R. Effect of Rapid Changes in Sink-Source Ratio on Export and Distribution of Products of Photosynthesis in Leaves of Beta vulgaris L. and Phaseolus vulgaris L. Plant Physiol. 1980 Nov;66(5):945–949. doi: 10.1104/pp.66.5.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Geiger D. R., Fondy B. R. A method for continuous measurement of export from a leaf. Plant Physiol. 1979 Sep;64(3):361–365. doi: 10.1104/pp.64.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Robinson S. P., Walker D. A. The significance of light activation of enzymes during the induction phase of photosynthesis in isolated chloroplasts. Arch Biochem Biophys. 1980 Jul;202(2):617–623. doi: 10.1016/0003-9861(80)90469-5. [DOI] [PubMed] [Google Scholar]
  5. Servaites J. C., Geiger D. R. Effects of light intensity and oxygen on photosynthesis and translocation in sugar beet. Plant Physiol. 1974 Oct;54(4):575–578. doi: 10.1104/pp.54.4.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Swanson C. A., Hoddinott J. Effect of light and ontogenetic stage on sink strength in bean leaves. Plant Physiol. 1978 Sep;62(3):454–457. doi: 10.1104/pp.62.3.454. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES