Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Oct;70(4):932–938. doi: 10.1104/pp.70.4.932

Investigation of the Mechanism of Action of a Chlorosis-Inducing Toxin Produced by Pseudomonas phaseolicola

Alison G Smith 1,1, Philip H Rubery 1
PMCID: PMC1065802  PMID: 16662646

Abstract

A toxin that induced chlorotic haloes (typifying haloblight disease) on primary leaves of Phaseolus vulgaris L. (var. Canadian Wonder) was partially purified from culture filtrates of the causative agent Pseudomonas phaseolicola (Burkh.) Dowson. This material was used to investigate chlorosis induction. Haloes could only be induced in those bean leaves that were expanding and synthesizing chlorophyll (Chl); the toxin, therefore, does not promote Chl breakdown. Chl, carotene, and xanthophyll synthesis were inhibited in sections of greening barley (Hordeum vulgare L.) leaves, irrespective of the irradiance level. In parallel experiments, the toxin decreased the level of 5-aminolevulinic acid by amounts sufficient to account for toxin-inhibition of Chl synthesis. Electron microscopy revealed no difference between the transformation of etioplasts into chloroplasts in toxin-treated and control tissue, despite a 60% reduction in Chl in the former. The incorporation of [14C]acetate into lipid by greening barley leaf sections and by isolated Pisum sativum chloroplasts in the light and the dark was inhibited about 60% by the toxin. The distribution of radioactivity among the spectra of acyl residues was the same in the control and toxin-treated material. It is suggested that the toxin interferes with an early process common to the synthesis of different lipids, including Chl.

Full text

PDF
932

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K., Snow J. S. Isolation and cultivation of haemophilus ducreyi on the chorioallantois of chick embryos. Am J Pathol. 1940 May;16(3):269–276.1. [PMC free article] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beale S. I., Castelfranco P. A. 14 C incorporation from exogenous compounds into -aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun. 1973 May 1;52(1):143–149. doi: 10.1016/0006-291x(73)90966-2. [DOI] [PubMed] [Google Scholar]
  4. Blair G. E., Ellis R. J. Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta. 1973 Aug 24;319(2):223–234. doi: 10.1016/0005-2787(73)90013-0. [DOI] [PubMed] [Google Scholar]
  5. Burns E. R., Buchanan G. A., Carter M. C. Inhibition of carotenoid synthesis as a mechanism of action of amitrole, dichlormate, and pyriclor. Plant Physiol. 1971 Jan;47(1):144–148. doi: 10.1104/pp.47.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Granick S. The induction in vitro of the synthesis of delta-aminolevulinic acid synthetase in chemical porphyria: a response to certain drugs, sex hormones, and foreign chemicals. J Biol Chem. 1966 Mar 25;241(6):1359–1375. [PubMed] [Google Scholar]
  7. Jacques S., Sung Z. R. Regulation of pyrimidine and arginine biosynthesis investigated by the use of phaseolotoxin and 5-Fluorouracil. Plant Physiol. 1981 Feb;67(2):287–291. doi: 10.1104/pp.67.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klein S., Harel E., Ne'eman E., Katz E., Meller E. Accumulation of delta-Aminolevulinic Acid and Its Relation to Chlorophyll Synthesis and Development of Plastid Structure in Greening Leaves. Plant Physiol. 1975 Oct;56(4):486–496. doi: 10.1104/pp.56.4.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mitchell R. E., Bieleski R. L. Involvement of phaseolotoxin in halo blight of beans: transport and conversion to functional toxin. Plant Physiol. 1977 Nov;60(5):723–729. doi: 10.1104/pp.60.5.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nichols B. W., Moorhouse R. The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris. Lipids. 1969 Sep;4(5):311–316. doi: 10.1007/BF02530998. [DOI] [PubMed] [Google Scholar]
  11. Patil S. S., Tam L. Q. Mode of Action of the Toxin from Pseudomonas phaseolicola: I. Toxin Specificity, Chlorosis, and Ornithine Accumulation. Plant Physiol. 1972 May;49(5):803–807. doi: 10.1104/pp.49.5.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Patil S. S., Youngblood P., Christiansen P., Moore R. E. Phaseotoxin A: an antimetabolite from Pseudomonas phaseolicola. Biochem Biophys Res Commun. 1976 Apr 19;69(4):1019–1027. doi: 10.1016/0006-291x(76)90474-5. [DOI] [PubMed] [Google Scholar]
  13. Ridley S. M., Ridley J. Interaction of Chloroplasts with Inhibitors: Location of Carotenoid Synthesis and Inhibition during Chloroplast Development. Plant Physiol. 1979 Feb;63(2):392–398. doi: 10.1104/pp.63.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roughan P. G., Slack C. R., Holland R. High rates of [1-14C]acetate incorporation into the lipid of isolated spinach chloroplasts. Biochem J. 1976 Sep 15;158(3):593–601. doi: 10.1042/bj1580593. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES