Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Oct;70(4):965–970. doi: 10.1104/pp.70.4.965

Rapid Fractionation of Wheat Leaf Protoplasts Using Membrane Filtration 1

The Determination of Metabolite Levels in the Chloroplasts, Cytosol, and Mitochondria

Ross McC Lilley 1,2, Mark Stitt 1, Gerhard Mader 1, Hans W Heldt 1
PMCID: PMC1065808  PMID: 16662652

Abstract

A technique is presented for measuring the in vivo metabolite levels in the chloroplast stroma, the cytosol, and the mitochondrial matrix of wheat (Triticum aestivum, var `Timmo') leaf protoplasts, in which membrane filtration is used to prepare fractions enriched in the different subcellular fractions within 0.1 seconds after disruption of the protoplasts. By closing a syringe, protoplasts are forced through a net and disrupted, diluting the cytosol into the medium and also releasing intact chloroplasts and mitochondria which can then be immediately removed on membrane filters placed behind the nylon net. By varying the membrane filters, different filtrates are obtained corresponding to (a) mainly cytosol, or (b) cytosol and mitochondria with only low levels of chloroplasts; alternatively, (c) the entire protoplast contents are obtained by omitting the filters. The filtrates are immediately split, half flowing into HClO4 where they are immediately quenched for subsequent metabolite analyses; the other half flows into detergent and is used to monitor the exact distribution of marker enzymes in each individual fractionation. Using the measured distributions of metabolite and of marker enzymes in the three filtrates, the subcellular distribution of the metabolite can be algebraically calculated. The method is presented using ATP as an example.

The quench time (0.1 second) made possible by membrane filtration is considerably faster than has been possible in the previously developed techniques using silicone oil centrifugation for chloroplasts (1 second) or mitochondria (1 minute). This rapid quench makes it possible to investigate subcellular pools which have a rapid turnover, like the adenine nucleotides.

Full text

PDF
965

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Edwards G. E., Robinson S. P., Tyler N. J., Walker D. A. Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat: influence of orthophosphate, pyrophosphate, and adenylates. Plant Physiol. 1978 Aug;62(2):313–319. doi: 10.1104/pp.62.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Maclennan D. H., Beevers H., Harley J. L. 'Compartmentation' of acids in plant tissues. Biochem J. 1963 Nov;89(2):316–327. doi: 10.1042/bj0890316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Palmieri F., Klingenberg M. Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol. 1979;56:279–301. doi: 10.1016/0076-6879(79)56029-7. [DOI] [PubMed] [Google Scholar]
  4. Randall P. J., Bouma D. Zinc deficiency, carbonic anhydrase, and photosynthesis in leaves of spinach. Plant Physiol. 1973 Sep;52(3):229–232. doi: 10.1104/pp.52.3.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Robinson S. P., Walker D. A. Rapid separation of the chloroplast and cytoplasmic fractions from intact leaf protoplasts. Arch Biochem Biophys. 1979 Sep;196(2):319–323. doi: 10.1016/0003-9861(79)90584-8. [DOI] [PubMed] [Google Scholar]
  6. STOCKING C. R., WILLIAMS G. R., ONGUN A. Intracellular distribution of the early products of photosynthesis. Biochem Biophys Res Commun. 1963 Mar 5;10:416–421. doi: 10.1016/0006-291x(63)90548-5. [DOI] [PubMed] [Google Scholar]
  7. Santarius K. A., Heber U. Changes in the intracellular levels of ATP, ADP, AMP and P1 and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim Biophys Acta. 1965 May 25;102(1):39–54. doi: 10.1016/0926-6585(65)90201-3. [DOI] [PubMed] [Google Scholar]
  8. Stitt M., Lilley R. M., Heldt H. W. Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts. Plant Physiol. 1982 Oct;70(4):971–977. doi: 10.1104/pp.70.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wirtz W., Stitt M., Heldt H. W. Enzymic determination of metabolites in the subcellular compartments of spinach protoplasts. Plant Physiol. 1980 Jul;66(1):187–193. doi: 10.1104/pp.66.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES