Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Oct;70(4):978–981. doi: 10.1104/pp.70.4.978

Chloroplast Sulfhydryl Groups and the Light Activation of Fructose-1,6-Bisphosphatase 1

Rudolf E Slovacek 1, Sharon Vaughn 1
PMCID: PMC1065810  PMID: 16662654

Abstract

Studies of isolated intact spinach (Spinacia oleracea L.) chloroplasts reveal that most of the available sulfhydryl groups are associated with stromal protein as opposed to a thylakoid membrane fraction under non-denaturing conditions. Increases in sulfhydryl content of approximately 50% occurred with illumination and could be correlated kinetically with a reductive activation of fructose-1,6-bisphosphatase during CO2-assimilation. Inhibition of linear electron flow with 3-(3,4-dichlorophenyl)-1,1-dimethylurea prevented light driven increases in both fructose-1,6-bisphosphatase activity and the relative sulfhydryl number. These results provide evidence for the operation of a reductive enzyme activating system in vivo.

Full text

PDF
978

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  3. Kelly G. J., Zimmermann G., Latzko E. Light induced activation of fructose-1, 6-bisphosphatase in isolated intact chloroplasts. Biochem Biophys Res Commun. 1976 May 3;70(1):193–199. doi: 10.1016/0006-291x(76)91127-x. [DOI] [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. Leegood R. C., Walker D. A. Autocatalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplasts. Arch Biochem Biophys. 1980 Apr 1;200(2):575–582. doi: 10.1016/0003-9861(80)90389-6. [DOI] [PubMed] [Google Scholar]
  6. Portis A. R., Jr, Chon C. J., Mosbach A., Heldt H. W. Fructose-and sedoheptulosebisphosphatase. The sites of a possible control of CO2 fixation by lightdependent changes of the stromal Mg2+ concentration. Biochim Biophys Acta. 1977 Aug 10;461(2):313–325. doi: 10.1016/0005-2728(77)90181-5. [DOI] [PubMed] [Google Scholar]
  7. Pradel J., Soulié J. M., Buc J., Meunier J. C., Ricard J. On the activation of fructose-1,6-bisphosphatase of spinach chloroplasts and the regulation of the Calvin cycle. Eur J Biochem. 1981 Jan;113(3):507–511. doi: 10.1111/j.1432-1033.1981.tb05092.x. [DOI] [PubMed] [Google Scholar]
  8. Slovacek R. E., Hind G. Influence of antimycin a and uncouplers on anaerobic photosynthesis in isolated chloroplasts. Plant Physiol. 1977 Oct;60(4):538–542. doi: 10.1104/pp.60.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tillberg J. E., Giersch C., Heber U. CO2 reduction by intact chloroplasts under a diminished proton gradient. Biochim Biophys Acta. 1977 Jul 7;461(1):31–47. doi: 10.1016/0005-2728(77)90067-6. [DOI] [PubMed] [Google Scholar]
  10. Werdan K., Heldt H. W., Milovancev M. The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta. 1975 Aug 11;396(2):276–292. doi: 10.1016/0005-2728(75)90041-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES