Abstract
We herein morphologically diagnose the 5 natural groups of fish blood flukes and name them. Species of Chimaerohemecidae Yamaguti, 1971 infect chimeras, sharks, and rays (Chondrichthyes) and have C-shaped lateral tegumental spines and a non-sinusoidal testis or lack spines and have a sinusoidal testis. Species of Acipensericolidae n. fam. infect sturgeons and paddlefish (Acipenseriformes) and have a robust, bowl-shaped, pedunculate anterior sucker, lateral tegumental spines that are spike-like (not C shaped), an inverse U-shaped intestine (anterior ceca absent) with posterior ceca terminating near the excretory bladder, 6 testes (inter-cecal ovoid or oblong, lacking deep lobes; including 1 post-ovarian testis), a Laurer’s canal, and a dextral common genital pore. Species of Sanguinicolidae Poche, 1926 infect primarily later-branching freshwater ray-finned fishes (Teleostei) and have a diminutive anterior sucker, a medial esophageal swelling (pouch), short, radial ceca of approximately equal length or short anterior ceca plus an elongate, dendritic posterior cecum, testis with appendix-like lateral lobes, no Laurer’s canal, and separate or common genital pores. Species of Elopicolidae n. fam. infect ladyfishes, tarpons, and catadromous eels (Elopomorpha) and have a robust, bowl-shaped, pedunculate anterior sucker, lateral tegumental spines that are spike-like (can be lost in adult), short or indistinct anterior ceca, posterior ceca that terminate at level of the testis(es), a single testis or 2 testes, a Laurer’s canal present or absent, and a sinistral common genital pore and atrium. Species of Aporocotylidae Odhner, 1912 primarily infect later-branching marine and estuarine ray-finned fishes (Teleostei) and have a spheroid anterior sucker with concentric rows of circumferential spines or the spheroid anterior sucker is lost in adults or adults have a diminutive anterior sucker, a sinuous esophagus lacking a pouch, an X- or H-shaped intestine having 4 ceca, long anterior ceca (or secondarily lost), smooth posterior ceca that extend posteriad in parallel with respective body margin and terminate near the posterior body end, testis(es) that lack appendix-like lateral lobes, no Laurer’s canal, and a sinistral common genital pore or separate genital pores that are sinistral. Our 28S phylogeny recovered the fish blood flukes as monophyletic and each of the morphologically diagnosed families as monophyletic and sister to the remaining blood flukes infecting turtles and homeotherms. Acipensericolidae was recovered sister to the clade comprising Chimaerohemecidae + Sanguinicolidae and Elopicolidae + Aporocotylidae. The branching order and interrelationships of these families remains unsettled perhaps because of low taxon sampling among non-aporocotylids and extinction of intermediate taxa.
Keywords: Fish, Blood fluke, Digenea, Taxonomy, Systematics
The fish blood flukes, “Aporocotylidae Odhner, 1912” (see Bullard et al., 2009), presently comprise 5 morphologically distinct but as of yet undiagnosed lineages, 46 accepted genera, and >175 spp. Yamaguti (1958, 1971) proposed several subfamilies for the relatively few genera that were accepted at the time; however, none of those subfamilies were adopted because their diagnoses were based on erroneous character state assignments or homoplasy and because they are routinely and unequivocally recovered as paraphyletic or polyphyletic (Bullard et al., 2006, 2008, 2012; Orélis-Ribeiro et al., 2014; Orélis-Ribeiro and Bullard, 2015, 2016; Warren et al., 2017, 2019, 2020, 2021, 2023; Warren and Bullard, 2019, 2021). Since Smith (1997a, 1997b, 2002) reviewed the 20 genera of fish blood flukes that were accepted in 2002, an additional 26 genera and >100 species have been described. This later body of work collectively included many new taxonomic characters and character states with which to diagnose, differentiate, and classify fish blood fluke genera and the 5 main clades they comprise (Bullard and Overstreet, 2003, 2008; Bullard et al., 2006, 2008, 2012; Bullard and Jensen, 2008; Bullard, 2010a, 2010b, 2014; Orélis-Ribeiro et al., 2013, 2014, 2017; Truong and Bullard, 2013; Orélis-Ribeiro and Bullard, 2015, 2016; Cribb et al., 2017; Warren et al., 2017, 2019, 2020, 2021, 2023; Warren and Bullard, 2019, 2020; Cutmore et al., 2022). We herein diagnose these lineages using morphology, propose new families for them, and test this new classification scheme using a 28S phylogeny.
MATERIALS AND METHODS
The new and elevated family group names herein follow the recommendations of the International Commission on Zoological Nomenclature (ICZN, 1999; Notton et al., 2011). Specifically, Article 29.1, Formation of family-group names, states that “A family-group name is formed by adding to the stem of the name [Art. 29.3] of the type genus, or to the entire name of the type genus [see Article 29.6], a suffix as specified in Article 29.2” (Yamaguti, 1958, 1971). Article 29.3, Determination of stem in names of type genera, states that “The stem of a family-group name is based on the name of its type genus [Art. 63]…” Article 36, Principal of coordination, states that “A name established for a taxon at any rank in the family group (which includes the subfamily, family, and superfamily) is deemed to have been simultaneously established for nominal taxa at all other ranks in the family group; all these taxa have the same type genus, and their names are formed from the stem of the name of the type genus [Art. 29.3] with appropriate change of suffix [Art. 34.1]. The name has the same authorship and date at every rank.” Article 64, Choice of type genus, states that “An author who wishes to establish a new nominal family-group taxon may choose as type genus any included nominal genus the name of which he or she regards as valid [Art. 11.7.1], not necessarily that having the oldest name. The choice of type genus determines the stem of the name of the nominal family-group taxon [Art. 29.1].”
Each family diagnosis herein includes the available information on the known/reported intermediate and definitive hosts, site of infection in the definitive host, cercarial morphology, egg shape and site of infection, schistosomulum morphology, and adult morphology. For some of the proposed families, the life cycles of none, few, or several of the species are known.
Phylogenetic methods follow that of Warren and Bullard (2019), Bullard and Dutton (2022), and Whelan et al. (2022) (Table I). Members of Liolopidae Dollfus, 1934, Diplostomoidea Poirier, 1886, and Brachylaimoidea Joyeuz and Foley, 1930 were selected as functional outgroup taxa for the Schistosomatoidea Stiles and Hassal, 1898 (see De León and Hernández-Mena, 2019; Bullard and Dutton, 2022). All taxa included in the phylogenetic analysis have been published with morphological descriptions except the following unpublished sequences of ours: Sanguinicolidae sp. from heart of Micropterus sp. collected in the Coosa River, Alabama; Sanguinicolidae sp. from the body wash of Mystus cf. mysticetus in the Mekong River, Vietnam; Sanguinicolidae sp. from the body cavity of Pangasius cf. macronema collected in the Mekong River, Vietnam; Chimaerohemecidae sp. from the gill epithelium of the smooth butterfly ray, Gymnura micrura (Bloch and Schneider, 1801) collected in Mobile Bay, Alabama; Chimaerohemecidae sp. from the heart of smalltooth sawfish, Pristis pectinata Latham, 1796 collected in the Gulf of Mexico; and Chimaerohemecidae sp. from the heart of Gymnura cf. poecilura collected in the South China Sea off Vietnam. The specimens that produced the sequences we labeled herein as “Sanguinicolidae sp.” (several species; Fig. 1; Table I) had the diagnostic features for the family as diagnosed herein. Those of “Chimaerohemecidae sp.” were diagnosed by having C-shaped lateral tegumental spines (autopomorphic for that family) with the exception of that from the smooth butterfly ray. That sequence is by definition a nonugen (Roberts et al., 2018) and was sourced from blood fluke eggs in the gill. No family-level diagnostic features for blood fluke miracidia have been proposed, but we conservatively identified the eggs as a species of the family based on the sequence being recovered within other morphologically identified sequences of that family.
Table I.
New 28S sequences generated for the present study. Superscripts indicate specimens in Figure 1.
| Species | Host | Locality | GenBank accession nos. |
|---|---|---|---|
| Chimaerohemecidae sp.13 | Longtail butterfly ray, Gymnura cf. poecilura (Shaw, 1804) Dor, 1984 (Myliobatiformes: Gymnuridae) | Eastern Sea, off Nha Trang, Vietnam | OQ709101 |
| Chimaerohemecidae sp.12 | Smalltooth sawfish, Pristis pectinata Latham, 1796 (Rhinopristiformes: Pristidae) | Eastern Gulf of Mexico, off Naples, Florida | OQ709102 |
| Chimaerohemecidae sp.11 | Smooth butterfly ray, Gymnura micrura (Bloch and Schneider, 1801) Uyeno and Miyake, 1983 (Myliobatiformes: Gymnuridae) | Northern Gulf of Mexico, Mobile Bay, Alabama | OQ709103 |
| Sanguinicolidae sp.4 | Bass, Micropterus sp. (Lacepède 1802) Berg, 1949 (Centrarchiformes: Centrarchidae) | Coosa River, Alabama | OQ709104 |
| Sanguinicolidae sp.6 | Mystus cf. mysticetus Roberts, 1992 (Siluriformes: Bagridae) | Dong Thap fish market (Mekong River), Vietnam | OQ709105 |
| Sanguinicolidae sp.7 | Pangasius cf. macronema Bleeker, 1850 (Siluriformes: Pangasiidae) | Dong Thap fish market (Mekong River), Vietnam | OQ709106 |
| Nomasanguinicola canthoensis Truong and Bullard, 2013 | Broadhead catfish, Clarias macrocephalus Günther 1864 (Siluriformes: Clariidae) | Can Tho fish market, (Mekong River), Vietnam | OQ709107 |
| Hyperandrotrema walterboegeri Orélis-Ribeiro and Bullard, 2013 | Shortfin mako shark, Isurus oxyrinchus Rafinesque, 1810 (Lamniformes: Lamnidae) | Northern Gulf of Mexico, off Dauphin Island, Alabama | OQ709108 |
| Myliobaticola richardheardi Bullard and Jensen, 2008 | Atlantic stingray, Hypanus sabinus (Lesueur, 1824) Last, Manjaji-Matsumoto, Naylor, and White, 2016 (Myliobatiformes: Dasyatidae) | Mississippi Sound, northern Gulf of Mexico, off Biloxi, Mississippi, USA | OQ709109 |
| Selachohemecus benzi Bullard, Overstreet, and Carlson, 2006 | Blacktip shark, Carcharhinus limbatus (Valenciennes, 1839) Compagno, 1973 (Carcharhiniformes: Carcharhinidae) | Northern Gulf of Mexico, Mississippi, | OQ709110 |
| Selachohemecus olsoni Short, 1954 | Atlantic sharpnose shark, Rhizoprionodon terraenovae (Richardson, 1837) Springer, 1964 (Carcharhiniformes: Carcharhinidae) | Mississippi Sound, northern Gulf of Mexico, Mississippi, | OQ709111 |
Figure1.
Maximum-likelihood phylogeny based on the large subunit ribosomal DNA (28S). Labels in front of nodes are bootstrap support values. Values <80 not shown. New sequences generated along with GenBank accession numbers for this study in Table I. Scale bar indicates substitutions per site. Sequences for blood flukes not yet described or cercarial sequences follow associated numbering: 1Sanguinicolidae spp., cercariae ex. Posticobia brazieri (Smith 1882), Brisbane River, Queensland, Australia (Cutmore et al., 2022); 2Sanguinicolidae sp. W5003, cercaria ex. Plotiopsis balonnensis (Conrad, 1850), Northern Territory, Victoria River, Australia (Brant et al., 2006); 3Sanguinicolidae sp. ex Juga plicifera (Lea, 1838), King, Hills, Dell, Taylor Creek; McKenzie River, Oregon (Preston et al., 2020); 4Sanguinicolidae sp. ex Micropterus sp. (Lacepède 1802), Coosa River, Alabama; 5Sanguinicolidae sp. W5004, cercaria ex. Amerianna carina (Adams, 1861), Northern Territory, Mary River Floodplain, Australia (Brant et al., 2006); 6Sanguinicolidae sp. ex. Mystus cf. mysticetus, Mekong River, Vietnam; 7Sanguinicolidae sp. ex. Pangasius cf. macronema, Mekong River, Vietnam; 8Chimaerohemecidae sp., cercaria ex. Plebidonax deltoides (Lamarck, 1818), Stockton Beach, New South Wales, Australia (Cribb et al., 2017); 9Chimaerohemecidae sp. H, cercaria ex. Megapitaria squalida (G. B. Sowerby I, 1835), off Santa Rosalía, Gulf of California, Mexico Gulf of California, Mexico (Cutmore et al., 2022); 10Chimaerohemecidae sp., cercaria ex. Solen viridis (Say, 1821), Gulf of Mexico (Warren and Bullard, 2019); 11Chimaerohemecidae sp. ex. Gymnura micrura (Bloch and Schneider, 1801), Mobile Bay, Alabama; 12Chimaerohemecidae sp. ex. Pristis pectinata Latham, 1796, Gulf of Mexico; 13Chimaerohemecidae sp. ex. Gymnura cf. poecilura, Nha Trang, Vietnam; 14Schistosomatoidea sp. W1134 ex. Biomphalaria sudanica (E von Martens, 1870), Queen Elizabeth National Park, Uganda (Brant et al., 2006); 15Schistosomatoidea sp. W1284 ex. Segmentorbis kanisaensis (Preston, 1914), Lake Victoria, Kenya (Brant et al., 2006).
DESCRIPTIONS
Chimaerohemecidae Yamaguti, 1971
Accepted genera:
Chimaerohemecus Van der Land, 1967 [type]; Selachohemecus Short, 1954; Orchispirium Madhavi and Rao, 1970; Hyperandrotrema Maillard and Ktari, 1978; Myliobaticola Bullard and Jensen, 2008; Ogawaia Cutmore, Cribb, and Yong, 2018; Gymnurahemecus Warren, Ruiz, Whelan, Kritsky, and Bullard, 2019; Electrovermis Warren and Bullard, 2019; Achorovermis Warren and Bullard, 2020; Aetohemecus Warren and Bullard, 2021; Homestios Warren and Bullard, 2021.
Diagnosis:
Hermaphroditic, asexual reproduction in marine bivalves (Electrovermis), lacking encysted metacercaria or second intermediate host (Table II). Sporocyst spheroid or ovoid, with few cercariae. Cercaria non-acetabulate apharyngeate, non-ocellate; spinous anterior sucker present; tegumental body spines distributing as lateral transverse rows; body fin present; tail brevifurcate; furcae asymmetrical, lacking fins; discernable gonads or genitalia indistinct. Extrauterine eggs embedding within and undergoing considerable larval development in gill epithelium of definitive host.
Table II.
Reports of intermediate hosts and completed life cycles of fish blood flukes.
| Host | Cercaria | Locality | Reference |
|---|---|---|---|
| Gastropoda | |||
| Amerianna carinata (H. Adams, 1861) (Hygrophila: Planorbidae); Glyptophysa gibbose (A. Gould, 1847) (Hygrophila: Planorbidae) | Sanguinicolidae sp.5 (W5004) | Northern Territory, Mary River Floodplain, Australia | Brant et al. (2006) |
| Biomphalaria sudanica (E von Martens, 1870) (Hygrophila: Planorbidae) | Schistosomatoidea sp.14 (W1134) | Queen Elizabeth National Park, Uganda | Brant et al. (2006) |
| Campeloma decisum (Say, 1817) (Architaenioglossa: Viviparidae) | Pseudosanguinicola occidentalis | New York | Bacha (1966) |
| Fluminicola seminalis (Hinds, 1842) (Littorinimorpha: Hydrobiidae) | Sanguinicola klamathensis | Darrah Springs Hatchery, Tehama Co., California | Wales (1958) |
| Fluminicola virens (I.Lea, 1838) (Littorinimorpha: Hydrobiidae) | Sanguinicola idahoensis | Clearwater River, Clearwater Co., Idaho | Schell (1974) |
| Heleobia australis (Orbigny, 1835) (Littorinimorpha Cochliopidae) | Aporocotylidae gen sp. 1 | Arroyo Cangrejo, Buenos Aires province, Argentina | Matías et al. (2014) |
| Juga plicifera (Lea, 1838) (as Oxytrema silicula) (Caenogastropoda: Semisulcospiridae) | Sanguinicola alseae | Alsea River, Benton County, Oregon | Meade and Pratt (1965) |
| Juga plicifera (Lea, 1838) (as Oxytrema silicula) (Caenogastropoda: Semisulcospiridae) | Sanguinicolidae sp.3 (Aporocotylidae sp.) | King, Hills, Dell, Taylor Creek; McKenzie River | Preston et al. (2020) |
| Ancylus fluviatilis O. F. Müller, 1774 (Hygrophila: Planorbidae) | Sanguinicola rutili | Salamanca, Spain | Simon-Martin et al. (1987) |
| Leptoxis carinata (Bruguiere, 1792) “Oxytrema circumlineata” (Caenogastropoda: Pleuroceridae) | Sanguinicola fontinalis | Susquehanna River, Harrisburg, Pennsylvania | Hoffman et al. (1985) |
| Sanguinicola davisi | Darrah Springs Hatchery, Tehama Co., California | Wales (1958) | |
| Sanguinicola klamathensis | Klamath River, Oregon | Meade (1967) | |
| Littorodinops monroensis Frauenfeld, 1863 (Littorinimorpha: Hydrobiidae) | Aporocotylidae sp. cercaria type 1 | Northern Gulf of Mexico, Grand Lagoon, Florida | Bullard (2007) |
| Lymnaea stagnalis (Linnaeus, 1758) (Hygrophila: Lymnaeidae) | Sanguinicola sp. | Lake Glubokoye, Russia | Nikolaeva (1985) |
| Peregriana peregra (O. F. Müller, 1774) (as Lymnaea) (Hygrophila: Lymnaeidae) | Sanguinicola inermis | Europe | Kirk and Lewis (1993) |
| Planorbella trivolvis Say, 1817) (as Helisoma) (Hygorphila: Planorbidae) | Cercaria brevifurca | Vicinity of St. Louis, Missouri | McCoy (1929) |
| Cercaria whitentoni | Stillwater Tourist Park, Stillwater, Oklahoma | Croft (1933) | |
| Plotiopsis balonnensis (Conrad, 1850) (Caenogastropoda: Thiaridae) (as Thiara balannensis) | Sanguinicolidae sp.2 (W5003) | Northern Territory, Victoria River, Australia | Brant et al. (2006) |
| Posticobia brazieri (Smith 1882) (Littorinimorpha: Tateidae) | Paracardicoloides yamagutii | Downfall Creek, Wivenhoe Pocket, Queensland, Australia | Nolan and Cribb (2004) |
| Sanguinicolidae sp.1 (Aporocotylidae sp. B) | Unnamed tributary of Brisbane River, Australia; Fairnie Brook, Queensland, Australia | Cutmore et al. (2022) | |
| Sanguinicolidae sp.1 (Aporocotylidae sp. C) | Moggill Creek, Queensland, Australia; unnamed tributary of Brisbane River, Queensland, Australia | Cutmore et al. (2022) | |
| Sanguinicolidae sp.1 (Aporocotylidae sp. D) | Unnamed tributary of Brisbane River, Queensland, Australia | Cutmore et al. (2022) | |
| Sanguinicolidae sp.1 (Aporocotylidae sp. E) | Unnamed tributary of Brisbane River, Queensland, Australia | Cutmore et al. (2022) | |
| Sanguinicolidae sp.1 (Aporocotylidae sp. F) | Moggill Creek, Queensland, Australia | Cutmore et al. (2022) | |
| Sanguinicolidae sp.1 (Aporocotylidae sp. G) | Churchbank Weir, Queensland, Australia | Cutmore et al. (2022) | |
| Segmentorbis kanisaensis (Preston, 1914) (Hygrophila: Planorbidae) | Schistosomatoidea sp.15 (W1284) | Lake Victoria, Kenya | Brant et al. (2006) |
| Valvata tricarinata (Say, 1817) (Heterobranchia: Valvatidae) | Sanguinicola lophophora | Lake Francis, Isanti Co., Minnesota | Erickson and Wallace (1959) |
| Bivalvia | |||
| Anadara trapezia (Deshayes, 1839) (Arcida: Arcidae) | Elopicola bristowi | Eastern Moreton Bay, Queensland, Australia | Cutmore et al. (2022) |
| Argopecten irradians (Lamarck, 1819) (Pectinida: Pectinidae) | Cercaria martini | Northwestern Atlantic Ocean, Woods Hole, Massachusetts | Linton (1915); Stunkard (1983) |
| Chione cancellata (Linnaeus, 1767) (Venerida: Veneridae) | Cercaria cristulata | Northern Gulf of Mexico, Alligator Point, Florida | Holliman (1961) |
| Donax variabilis Say, 1822 (Cardiida: Donacidae) | Cercaria asymmetrica | Northern Gulf of Mexico, Alligator Point, Florida | Holliman (1961) |
| Electrovermis zappum | Northern Gulf of Mexico, Fort Morgan, Alabama | Warren and Bullard (2019) | |
| Ensis macha (Molina, 1782) (Adapedonta: Pharidae) | Aporocotylidae sp. cercaria | La Tapera, San Matias Gulf, Patagonia, Argentina | Vázquez et al. (2013); Orellana and Lohrmann (2015) |
| Eucallista purpurata (Lamarck, 1818) (Venerida, Veneridae) (as Amiantis purpurata) | Aporocotylidae sp. cercaria | El Molino Beach, San Matias Gulf, Patagonia, Argentina | Gilardoni et al. (2011); Carvalho et al. (2015) |
| Mactra isabelleana d’Orbigny, 1846 (Venerida: Mactridae) | Aporocotylidae sp. cercaria | Cassino Beach, San Matias Gulf, Patagonia, Argentina | Carvalho et al. (2015) |
| Megapitaria squalida (G. B. Sowerby I, 1835) (Venerida, Veneridae) | Chimaerohemecidae sp.9 (Aporocotylidae sp. H) | Off Santa Rosalía, Gulf of California, Mexico | Yee-Duarte et al. (2017); Cutmore et al. (2022) |
| Mercenaria capechiensis (Gmelin, 1791) (Venerida: Veneridae) | Cercaria mercenariae | Western Gulf of Mexico, Galveston Island, Texas | Wardle (1979) |
| Mesodesma donacium (Lamarck, 1818) (Venerida: Mesodesmatidae) | Aporocotylidae sp. cercaria | Carelmapu, Chile | López et al. (2014) |
| Plebidonax deltoides (Lamarck, 1818) (as Donax) (Cardiida: Psammobiidae) | Chimaerohemecidae sp.8 (Aporocotylidae sp. NSW1) | Stockton Beach, New South Wales, Australia | Cribb et al. (2017) |
| Solemya velum Say, 1822 (Solemyida: Solemyidae) | Cercaria solemyae | Northwestern Atlantic Ocean, Woods Hole, Massachusetts | Martin (1944) |
| Solen viridis (Say, 1821) (Adapedonta: Solenidae) | Chimaerohemecidae sp.10 (Aporocotylidae sp. cercaria type 2) | Northern Gulf of Mexico, Mississippi Sound, Mississippi | Bullard (2007); Warren and Bullard (2019) |
| Tagelus divisus (Spengler, 1794) (Cardiida: Solecurtidae) | Aporocotylidae sp. cercaria | Northwestern Atlantic Ocean, Biscayne Bay, Florida | Fraser (1967) |
| Annelida | |||
| Amphicteis gunneri (Sars, 1835) (Terebellida: Ampharetidae) | Cercaria amphicteis | Northern Gulf of Mexico, Apalachicola River, Florida | Oglesby (1961) |
| Amphitrite ornata (Leidy, 1855) (Terebellida: Terebellidae) | Cardicola parvus | Oyster landing in North Inlet, near Georgetown, South Carolina and Charleston, South Carolina | Siegel et al. (2018) |
| Amphitrite sp. Müller, 1771 (Terebellida: Terebellidae) | Cardicola forsteri | Kushimoto, Wakayama Prefecture, Japan | Shirakashi et al. (2016) |
| Artacama proboscidea Malmgren, 1866 (Terebellida: Terebellidae) | Aporocotyle simplex | Øresund, north of the island Veen, between Denmark and Sweden | Køie (1982) |
| Enoplobranchus sanguineus (Verrill, 1873) (Terebellida: Terebellidae) | Cardicola parvus | Oyster landing in North Inlet, near Georgetown, South Carolina and Charleston, South Carolina | Siegel et al. (2018) |
| Hydroides dianthus Verrill, 1873 (Sabellida: Serpulidae) | Cercaria loossi | Northwestern Atlantic Ocean, Woods Hole, Massachusetts | Linton (1915) |
| Lanassa nordenskioldi Malmgren, 1866 (Terebellida: Terebellidae) | “…morphologically indistinguishable” from Aporocotyle simplex | Seyðisfjörður, Eastern Iceland | Køie and Peterson (1988) |
| Lanicides vayssierei (Gravier, 1911) (Terebellidae: Terebellidae) | Cercaria hartmanae | Northwestern Atlantic Ocean, Woods Hole, Massachusetts | Martin (1952) |
| Longicarpus modestus (Quatrefages, 1866) (Terebellida: Terebellidae) | Cardicola forsteri | Off Port Lincoln, South Australia | Cribb et al. (2011) |
| Nicolea gracilibranchis (Grube, 1878) (Terebellida: Terebellidae) | Cardicola orientalis | Kushimoto, Wakayama Prefecture, Japan | Shirakashi et al. (2016) |
| Terebella lapidaria Linnaeus, 1767 (Terebellida: Terebellidae) | Cardicola laruei | Oyster landing in North Inlet, near Georgetown, South Carolina and Charleston, South Carolina | Siegel et al. (2018) |
| Terebella sp. Linnaeus, 1767 (Terebellida: Terebellidae) | Cardicola opisthorchis | Off Tsushima, Nagasaki, Japan | Sugihara et al. (2014) |
Body of adult dorsoventrally flat, ovoid or elongate, spinose and having each spine mounted on a muscular peduncle (Aetohemecus, Chimaerohemecus, Gymnurahemecus, Hyperandrotrema, Selachohemecus) or aspinose and lacking peduncles or tubercles (Achorovermis, Electrovermis, Homestios, Myliobaticola, Ogawaia) or having aspinose lateral tubercles (Orchispirium); spine bosses, posterolateral body protuberance, head collar, copulatory bursa, acetabulum, and median esophageal pouch or plicate organ lacking. Tegumental spines (if present) robust, C shaped, each mounted on a muscular peduncle, directed ventrally, distributing in a single lateral column (Aetohemecus, Gymnurahemecus, Selachohemecus) or 2 lateral columns (Chimaerohemecus) or a lateral field of interspaced spines (Hyperandrotrema). Rosethorn-shaped spines absent. Sensory papillae absent. Anterior sucker nearly indistinct, aspinose, diminutive, not pedunculate, not bowl shaped; mouth subterminal, a minute pore-like opening. Nervous system obvious depending on species; dorsolateral and ventrolateral nerve cords extending for nearly entire body length, forming anterior and posterior nerve commissures; secondary lateral branches obvious or indistinct. Pharynx absent. Esophagus long, sinuous or straight, medial, having a medial swelling (esophageal bulb) and/or posterior swelling (chamber) immediately anterior to cecal bifurcation; esophageal gland surrounding esophagus for entire length or limited to middle or posterior portion of esophagus (indistinct in Aetohemecus, Homestios, Myliobaticola). Intestine inverse U shaped or (secondarily) X shaped (Selachohemecus, Aetohemecus), bifurcating at midline, not crossing opposing cecum; posterior ceca slightly asymmetrical (Aetohemecus, Chimaerohemecus, Gymnurahemecus, Homestios, Hyperandrotrema, Myliobaticola, Orchispirium, Selachohemecus) or markedly asymmetrical (Achorovermis, Electrovermis, Ogawaia), blind ended, paired, terminating in anterior half of body (Achorovermis, Aetohemecus, Electrovermis, Gymnurahemecus, Homestios, Myliobaticola, Selachohemecus, Ogawaia) or posterior body extremity (Chimaerohemecus, Hyperandrotrema, Orchispirium). Genitalia occupying posterior one-third of body, post-gonadal.
Testis single, having smooth borders or exceptionally having posteriorly directed lobes (Orchispirium), non-sinusoidal (Aetohemecus, Chimaerohemecus, Gymnurahemecus, Hyperandrotrema, Selachohemecus) or sinusoidal (Achorovermis, Electrovermis, Homestios, Myliobaticola, Ogawaia, Orchispirium), anterior to ovary and genitalia, post-cecal (Achorovermis, Aetohemecus, Electrovermis, Gymnurahemecus, Homestios, Myliobaticola, Ogawaia, Selachohemecus) or inter-cecal (Chimaerohemecus, Hyperandrotrema, Orchispirium), not extending anterior to cecal bifurcation. Vasa efferentia coalescing ventrally and in posterior portion of testis, uniting to form vas deferens in posterior margin of testis; vas deferens straight (Achorovermis, Chimaerohemecus, Hyperandrotrema, Selachohemecus, Orchispirium, Ogawaia) or curved (Aetohemecus, Gymnurahemecus, Homestios) or looped (Electrovermis). Cirrus sac present, enveloping internal seminal vesicle and cirrus, post-gonadal or lateral to ovary (Aetohemecus, Orchispirium). Auxiliary external seminal vesicle absent.
Female reproductive system comprising a single ovary, oviduct, seminal receptacle that can comprise part of oviduct (oviducal seminal receptacle) (Myliobaticola, Orchispirium, Selachohemecus) or oviducal ampullae (Aetohemecus, Gymnurahemecus, Hyperandrotrema), vitellarium and primary vitelline collecting duct, oötype, uterus, and metraterm. Ovary single, wholly inter-cecal (Chimaerohemecus, Hyperandrotrema) or wholly post-cecal (Achorovermis, Aetohemecus, Electrovermis, Gymnurahemecus, Homestios, Myliobaticola, Ogawaia, Orchispirium, Selachohemecus), primarily post-testicular medial, or lateral to midline (Gymnurahemecus, Orchispirium, Selachohemecus), deeply lobed (Aetohemecus, Chimaerohemecus, Gymnurahemecus, Homestios, Hyperandrotrema, Selachohemecus) or superficially lobed (Electrovermis) or a loose aggregation of ova (Achorovermis, Myliobaticola, Orchispirium). Oviduct a thin-walled duct emanating from ovary, straight to sinuous (Aetohemecus, Chimaerohemecus, Gymnurahemecus, Selachohemecus, Ogawaia, Orchispirium) or looping (Achorovermis, Myliobaticola); Hyperandrotrema walterboegeri has a straight to sinuous oviduct and H. cetorhini has a looping oviduct. Indistinct in Electrovermis and Homestios. Vitellarium follicular, diffuse (Achorovermis, Electrovermis, Myliobaticola), in dense lobules (Aetohemecus, Gymnurahemecus, Homestios), or granular (Selachohemecus, Ogawaia, Orchispirium), symmetrical (Aetohemecus, Electrovermis, Myliobaticola, Ogawaia) or asymmetrical (Achorovermis, Chimaerohemecus, Gymnurahemecus, Homestios, Orchispirium, Selachohemecus; H. walterboegeri is asymmetrical and H. cetorhini is symmetrical), filling space from nerve commissure to proximal portion of testis (Achorovermis, Homestios), ovary (Aetohemecus, Gymnurahemecus, Selachohemecus), or genital pore (Chimaerohemecus, Electrovermis, Hyperandrotrema, Myliobaticola, Ogawaia, Orchispirium). Primary vitelline duct extending posteriad along dextral body margin or along midline, ventral to ovary (Chimaerohemecus), not forming a transverse vitelline duct or reservoir, uniting with oviduct in posterior body end proximal to and near oötype. Indistinct in Electrovermis, Homestios, and Myliobaticola. Laurer’s canal present (Chimaerohemecus, Hyperandrotrema, Gymnurahemecus) or absent (Aetohemecus, Achorovermis, Electrovermis, Homestios, Myliobaticola, Ogawaia, Orchispirium, Selachohemecus). Oötype post-cecal or exceptionally inter-cecal in Hyperandrotrema, posterior to common genital pore or exceptionally dextral to common genital pore (Orchispirium) or anterior to common genital pore (Selachohemecus), comprising an inconspicuous ovoid chamber; Mehlis’ gland indistinct, staining poorly and difficult to visualize with light microscopy of fixed, stained specimens. Uterus post-testicular or overlapping posterior margin of testis (Ogawaia), post-cecal or inter-cecal (Chimaerohemecus, Hyperandrotrema), typically straight or exceptionally convoluted (Aetohemecus, Chimaerohemecus, Hyperandrotrema, Ogawaia, Orchispirium), having ascending and descending portions; ascending portion extending anteriad along midline from oötype (Aetohemecus, Chimaerohemecus, Hyperandrotrema, Gymnurahemecus) or extending posteriad before turning anteriad and extending along midline (Achorovermis, Ogawaia, Selachohemecus), typically curving posteriad at level of testis (Aetohemecus, Ogawaia, Orchispirium), ovary (Achorovermis, Chimaerohemecus, Gymnurahemecus, Homestios, Hyperandrotrema, Myliobaticola, Selachohemecus), or seminal vesicle (Achorovermis); descending portion extending posteriad along sinistral body margin, uterus + metraterm flanking cirrus sac, metraterm muscularized to varying degrees or indistinct; uterine eggs thin-shelled, oblong (Aetohemecus, Achorovermis, Electrovermis, Homestios, Myliobaticola, Ogawaia, Orchispirium) or circular (Gymnurahemecus, Hyperandrotrema, Selachohemecus—S.A.B. observations), lacking filaments, lacking discernible miracidium, undergoing considerable larval development in tissue of definitive host (at least 1 species has eggs that hatch while in the gill of the fish host). Common genital pore dorsal, on sinistral body margin, post-gonadal aspinose, post-cecal or exceptionally inter-cecal in Hyperandrotrema; common genital atrium present in Chimaerohemecus and Hyperandrotrema, indeterminate for other genera.
Excretory vesicle minute, medial, having excretory arms or exceptionally lacking excretory arms (Gymnurahemecus) (indeterminate for Aetohemecus, Electrovermis, Myliobaticola, Ogawaia). Maturing in blood of sharks, rays, and chimaeras (Chondrichthyes).
Differential diagnosis:
Adults having C-shaped lateral tegumental spines each mounted on muscular peduncle and having non-sinusoidal testis or lacking lateral tegumental spines and having sinusoidal testis. Maturing in blood of sharks, rays, and chimaeras (Chondrichthyes).
Remarks
Based on morphology, we diagnose 2 groups within Chimaerohemecidae. One group matures in chimaeras, sharks, and epipelagic rays (Gymnuridae, Myliobatidae) and differs from all other blood flukes by having C-shaped lateral tegumental spines and a non-sinusoidal testis (Fig. 1). The other chimaerohemecids infect benthic rays (Narcinidae, Prisitidae, Glaucostegidae, Dasyatidae) and differ from all other blood flukes by lacking spines and having a sinusoidal testis. Warren and Bullard (2021) theorized that chimaerohemecids could eventually be split into different groups (subfamilies) based on the presence or absence of lateral tegumental spines and testis shape. Noteworthy also is that the X-shaped intestine of Selachohemecus and Aetohemecus is homoplasy, not homologous to the X-shaped intestine of Sanguinicola spp., for example, evidently evolved from the inverse U-shaped intestine of other chimaerohemecids (Warren and Bullard, 2021; present study; Fig. 1).
Only 1 study has matched cercariae and adults of a chimaerohemecid in the bivalve and chondrichthyan hosts (Warren and Bullard, 2019): Electrovermis zappum Warren and Bullard, 2019 infects the variable coquina clam, Donax variabilis Say, 1812 (Donacidae Fleming, 1828) and matures in the lesser electric ray, Narcine bancroftii (Griffith and Smith, 1834) (Narcinidae) in high-energy open-beach habitat in the northern Gulf of Mexico. Other studies have collected trematode cercariae from bivalves, sequenced them, conducted a phylogenetic analysis, inferred their taxonomic identity from the resulting tree topology, and presumed the identity of the definitive host group based on their clade assignment; which assumes no possibility of host switching (Cribb et al., 2017; Cutmore et al., 2022). Although we do not know the definitive host for any chimaerohemecid cercarial sequence other than E. zappum, sequences of these innominate cercariae clade with E. zappum and other batoid chimaerohemecids that lack C-shaped spines and have a sinusoidal testis. The cercaria for a blood fluke in which adults have C-shaped spines and lack a sinusoidal testis has not been reported.
Yamaguti (1971) proposed Chimaerohemecinae Yamaguti, 1971 for Chimaerohemecus trondheimensis Van der Land, 1967 (see Van der Land, 1967; Yamaguti, 1971), but his subfamily diagnosis was erroneous, including objective errors regarding the absence of lateral tegumental spines and the structure of the testis (Orélis-Ribeiro et al., 2013; Van der Land, 1967). Herein, we elevated the subfamily name to family as per the recommendations of the ICZN despite the core problems of Yamaguti’s subfamily diagnosis.
Acipensericolidae n. fam.
Accepted genera:
Acipensericola Bullard, Snyder, Jensen, and Overstreet, 2008.
ZooBank registration:
urn:lsid:zoobank.org:act:3647841C-A71D-48C5-8534-DC28C48FA73A.
Etymology:
Acipensericolidae refers to the definitive host group.
Diagnosis:
No life cycle known. Body of adult dorsoventrally flat, strongly ventrally concave, spinose; posterolateral body protuberance, head collar, copulatory bursa, acetabulum, and median esophageal pouch or plicate organ lacking. Tegumental body spines distributing as lateral transverse rows, spike-like lacking recurved tip. Rosethorn-shaped spines absent. Sensory papillae abundant, occupying ventrolateral body surface between lateral nerve cord and body margin.
Anterior sucker bowl shaped, centered on mouth, demarcated from the anterior body end by peduncle, having minute spines on inner anteroventral surface only; mouth subterminal, a relatively large opening (cf. chimaerohemecids). Nervous system well developed; dorso- and ventrolateral nerve cords present, extending for nearly entire body length, meeting to form anterior and posterior nerve commissures; secondary lateral branches obvious or indistinct. Pharynx between anterior sucker and nerve commissure, highly muscular, intensely basophilic. Esophagus medial, extending straight before connecting with intestine. Intestine inverse U-shaped, bifurcating at midline, with long posterior ceca only and no anterior cecum, lacking secondary rami, not crossing opposing cecum, extending posteriad to near body end.
Testes inter-cecal 6 in number, comprising 5 pre-ovarian testes and 1 post-ovarian testis. Vasa efferentia entwining throughout testicular tissue, with anterior and posterior trunks linking testicular column and posterior-most testis; vas deferens straight. Cirrus sac dextral, post-ovarian enveloping seminal vesicle and cirrus; cirrus everting dorsally near dextral body margin. Common genital atrium present; common genital pore dorsal, opening on dextral body margin, inter-cecal or dorsal to dextral cecum, post-ovarian aspinose. Auxiliary external seminal vesicle absent.
Ovary single, medial, inter-cecal separating anterior column of testes from single posterior testis, immediately posterior to testicular column, deeply lobed, located within posterior one-fourth of body. Oviduct a thin-walled duct emanating from ovary, sinistral, functioning as oviducal seminal receptacle, extending to level of posterior testis before recurving before meeting oötype. Vitellarium diffuse, extending dorsal and ventral to gonads and ceca, not extending laterally beyond ventrolateral nerve cords; primary vitelline duct extending posteriad, sinistral, single/unpaired, not forming a transverse vitelline duct or reservoir, arcing sinistral to posterior testis in column, uniting with oviduct in posterior body end proximal to and near oötype. Laurer’s canal present. Oötype spherical, inter-cecal inter-testicular, ventral to ovary, medial to cirrus sac. Uterus long, ventral to ovary, inter-cecal having ascending and descending portions, convoluted, extending anterior from oötype to level of posterior portion of testicular column before curving posteriad, typically containing several large eggs; uterine eggs oblong, one-third uterus maximum width, lacking filaments, lacking mature miracidium. Genitalia occupying posterior one-fourth of body, inter-testicular lateral to ovary and oötype.
Excretory vesicle large, Y shaped, cradling posterior testis, thin walled; excretory pore dorsal, subterminal. Maturing in blood of sturgeons and paddlefish (Chondrostei: Acipenseriformes).
Differential diagnosis:
Anterior sucker robust, bowl shaped, pedunculate, having minute spines on inner anteroventral surface only. Lateral tegumental spines spike-like (not C shaped, lacking recurved tip); distributing in ventrolateral transverse rows, with distal end having a sharp tip protruding slightly from tegument. Pharynx present. Intestine inverse U shaped; anterior ceca absent; posterior ceca terminating near excretory bladder. Testes 6 in number (5 pre-ovarian testes plus 1 post-ovarian testis), inter-cecal having shallow lobes, non-sinusoidal Laurer’s canal present. Vitellarium symmetrical; primary vitelline collecting duct sinistral. Common genital pore dextral. Maturing in blood of sturgeons and paddlefishes (Acipenseriformes)
Remarks
Acipensericolids mature in sturgeons and paddlefish (Acipenseriformes) and are readily differentiated from all other fish blood flukes by the combination of having a robust, bowl-shaped, pedunculate anterior sucker, lateral tegumental spines that are spike-like (not C shaped), an inverse U-shaped intestine (anterior ceca absent) with posterior ceca terminating near the excretory bladder, 6 testes (inter-cecal ovoid or oblong, lacking deep lobes; including 1 post-ovarian testis), a Laurer’s canal, and a dextral common genital pore.
Elopicolidae n. fam.
Accepted genera:
Elopicola Bullard, 2014 (type genus) and Paracardicoloides Martin, 1974.
ZooBank registration:
urn:lsid:zoobank.org:act:79EFE8E4-FB25-4297-AA93-8FA90CEEEC01.
Etymology:
Elopicolidae refers to the definitive host group.
Diagnosis:
Hermaphroditic, asexual reproduction in freshwater gastropods (Paracardicoloides) and marine bivalves (Elopicola), lacking encysted metacercaria or second intermediate host. Sporocyst oblong, harboring few cercariae. Cercaria non-acetabulate apharyngeate, non-ocellate having spinous anterior sucker, tegumental body spines, body fin, and symmetrical furcae with fins, lacking discernable gonads or genitalia, undergoing considerable larval development in vertebrate definitive host. Extrauterine eggs embedding within and undergoing considerable larval development in gill epithelium of definitive host.
Body of adult dorsoventrally flat, thick-bodied, spinose (Paracardicoloides spp. and juveniles of Elopicola spp.) or aspinose (adults of Elopicola spp.), lacking posterolateral body protuberance, head collar, copulatory bursa, acetabulum, and median esophageal pouch or plicate organ lacking. Tegumental body spines (if present) straight, spike-like lacking recurved tip, not distributing as ventrolateral transverse rows, with tips enveloped by tegument. Rosethorn-shaped spines absent. Sensory papillae abundant, occupying ventrolateral body surface between lateral nerve cord and body margin. Anterior sucker bowl shaped, centered on mouth, demarcated from anterior body end by peduncle, aspinous; mouth subterminal, a relatively large opening (cf. chimaerohemecids). Nervous system well developed; dorso- and ventrolateral nerve cords present, extending for nearly entire body length, meeting to form anterior and posterior nerve commissures; secondary lateral branches indistinct. Sensory papillae present (Elopicola) or absent (Paracardicoloides), bearing cilia (Elopicola) or lacking cilia (Paracardicoloides), not distributing in regular dorsolateral bands. Pharynx present (Elopicola) or absent (Paracardicoloides), between anterior sucker and nerve commissure, muscular, intensely basophilic. Esophagus medial, extending straight before connecting with intestine. Intestine typically inverse U-shaped or with abbreviated lobes of cecum directing anteriad, bifurcating at midline, with long posterior ceca, terminating in middle one-third of body.
Testes single (Elopicola) or 2 in number (Paracardicoloides), inter-cecal (Elopicola) or post-cecal (Paracardicoloides), medial, deeply lobed, in posterior half of body. Vasa efferentia entwining throughout testicular tissue, coalescing in anterosinistral region of testis to form vas deferens (Elopicola) or comprising anterior and posterior trunks linking anterior and posterior testes (Paracardicoloides); vas deferens straight, not convoluted, meeting with cirrus sac. Cirrus sac sinistral, pre-ovarian enveloping internal seminal vesicle and cirrus; cirrus everting dorsally in sinistral body half (Paracardicoloides) or everting dorsally near midline (Elopicola), post-cecal. Common genital atrium present; common genital pore dorsal, near sinistral body margin, post-cecal pre-ovarian. Auxiliary external seminal vesicle absent.
Ovary medial, post-cecal inter-testicular (Paracardicoloides) or post-testicular (Elopicola), deeply lobed. Oviduct a thin-walled duct emanating from ovary, medial, post-cecal post-genital pore; oviducal seminal receptacle present. Vitellarium follicular, an extensive network of narrow interconnecting branching bands having granular vitelline material, extending laterad beyond ventrolateral nerve cords, occupying space from anterior nerve commissure posteriad to level of distal tips of posterior ceca; primary vitelline duct single/unpaired, not forming a transverse vitelline duct or reservoir, arcing along posterodextral margin of testis/anterior testis, connecting with oötype posteriorly (Paracardicoloides) or laterally (Elopicola). Laurer’s canal present (Paracardicoloides) or absent (Elopicola). Oötype oblong, pre-ovarian anterior to common genital pore (Paracardicoloides) or posterior to common genital pore (Elopicola). Uterus comprising short ascending and descending portions, not convoluted, pre-ovarian inter-cecal (Paracardicoloides) or post-cecal (Elopicola); uterine eggs ovoid; metraterm pre-ovarian medial to cirrus sac.
Excretory vesicle large, Y shaped; excretory pore dorsal, subterminal. Maturing in blood of elopomorphs (Teleostei: Elopomorpha).
Differential diagnosis:
Anterior sucker robust, bowl shaped, aspinose in adults, pedunculate. Lateral tegumental spines spikelike not C shaped, not distributing in ventrolateral transverse rows, with distal end having a sharp tip enveloped by tegument (adults of Elopicola spp. are aspinose); mouth comprising a large opening. Pharynx present (Elopicola) or absent (Paracardicoloides). Intestine generally inverse U-shaped; anterior ceca short or nearly indistinct; posterior ceca terminating at level of testis (Elopicola)/anterior-most testis (Paracardicoloides). Testis(es) deeply lobed, non-sinusoidal comprising 1 pre-ovarian and inter-cecal testis plus 1 post-ovarian and post-cecal testis (Paracardicoloides) or comprising 1 inter-cecal testis (Elopicola); common genital atrium and pore present, sinistral, pre-ovarian. Vitellarium symmetrical; primary vitelline collecting duct dextral. Laurer’s canal present (Paracardicoloides) or absent (Elopicola). Egg in gill epithelium of fish host having elongate polar filaments. Maturing in blood of elopomorphs (Teleostei: Elopomorpha).
Remarks
Elopicolids mature in fishes having a leptocephalus larva: ladyfishes (Elops spp.), tarpons (Megalops spp.), and catadromous eels (Anguilla spp.) (all Elopomorpha). They differ from all other blood flukes by the combination of having a robust, bowl shaped, pedunculate anterior sucker, lateral tegumental spines that are spike-like (can be lost in adult), short or nearly indistinct anterior ceca, posterior ceca that terminate at level of the testis(es), a single testis or 2 testes, a Laurer’s canal present or absent, and a sinistral common genital pore and atrium.
Sanguinicolidae Poche, 1926
Accepted genera:
Sanguinicola Plehn, 1905 (type); Plehniella Szidat, 1951; Nomasanguinicola Truong and Bullard, 2013; Kritsky Orélis-Ribeiro and Bullard 2016; Pseudosanguinicola Warren and Bullard, 2023; and Cladocaecum Orélis-Ribeiro and Bullard 2016; we provisionally include Parasanguinicola Herbert and Shaharom-Harrison, 1995.
Diagnosis:
Hermaphroditic, asexual reproduction in freshwater gastropods (Sanguinicola), lacking encysted metacercaria or second intermediate host, having migratory larva (schistosomulum) infecting lymphatic and blood vascular system, having adult infecting blood and body cavity of vertebrate definitive host. Sporocyst present (Sanguinicola) or sporocyst and redia present (Sanguinicola). Sporocyst spheroid (Sanguinicola) or ovoid (Sanguinicola), having few or having many cercariae (Sanguinicola). Cercaria non-acetabulate apharyngeate, non-ocellate having spinous anterior sucker; tegumental body spines present or absent; body fin present or absent; lacking discernable gonads or genitalia; tail furcae symmetrical, fins present or absent; undergoing considerable larval development in vertebrate definitive host; extrauterine eggs embedding in fish gill epithelium and undergoing considerable larval development; miracidium can hatch and emerge from eggs embedded in fish gill epithelium.
Body of adult dorsoventrally flat, ventrally concave, aspinose or spinose (Sanguinicola, Parasanguinicola, Pseudosanguinicola); head collar, copulatory bursa, acetabulum, and median esophageal pouch or plicate organ lacking. Tegumental body spines straight, elongate, not distally recurved, deeply rooted in tegument (Sanguinicola) or only slightly protruding from tegument (Sanguinicola, Parasanguinicola) or delicate and appearing irregular or discordant (Pseudosanguinicola) distributing in a single column (Sanguinicola, Parasanguinicola) or distributing as densely compacted transverse rows along lateral body margin (Pseudosanguinicola). Rosethorn-shaped spines absent. Sensory papillae present (Sanguinicola, Nomasanguinicola, Pseudosanguinicola) or absent (Cladocaecum, Kritsky, Plehniella) bearing cilia (Sanguinicola, Nomasanguinicola, Parasanguinicola, Pseudosanguinicola) or lacking cilia (Cladocaecum, Kritsky, Plehniella), not distributing in regular dorsolateral bands. Anterior sucker a proboscis accommodating the mouth, not separated from body by peduncle, having denticles in 2 columns flanking mouth (Nomasanguinicola) or lacking denticles (Cladocaecum, Kritsky, Parasanguinicola, Plehniella, Pseudosanguinicola, Sanguinicola), having concentric spine rows in small adults (Kritsky, Plehniella) or aspinose (Cladocaecum, Sanguinicola, Parasanguinicola, Pseudosanguinicola); mouth medioventral, subterminal, comprising a minute pore-like opening, with associated toothlike mouth apparatus of Ejsmont (1926) (Pseudosanguinicola, Sanguinicola). Nervous system well developed; dorso- and ventrolateral nerve cords extending for nearly entire body length, meeting to form anterior and posterior nerve commissures; secondary lateral branches obvious (Sanguinicola) or indistinct (Cladocaecum, Kritsky, Nomasanguinicola, Parasanguinicola, Plehniella, Pseudosanguinicola). Pharynx present (Cladocaecum, Kritsky, Nomasanguinicola, Parasanguinicola, Plehniella, Sanguinicola) or absent (Pseudosanguinicola), not highly muscular, not intensely basophilic. Esophagus with anterior and posterior esophageal swellings. Intestine comprising 4 (exceptionally 5) ceca forming an X-shaped configuration (Parasanguinicola, Pseudosanguinicola, Sanguinicola) or having 5 or 6 radial ceca (Kritsky, Nomasanguinicola, Plehniella) or exceptionally having paired anterior ceca plus a medial cecum with numerous branches extending laterally (Cladocaecum), restricted to anterior half of body (Kritsky, Nomasanguinicola, Parasanguinicola, Pseudosanguinicola, Plehniella, Sanguinicola) or extending in posterior half (Cladocaecum), bifurcating at midline, blind ending, not overlapping another cecum.
Testis single, anterior to ovary and genitalia, diffuse, having laterally directed lobes or exceptionally (purportedly) not having lateral-directed lobes (Parasanguinicola), post-cecal (Kritsky, Nomasanguinicola, Parasanguinicola, Pseudosanguinicola, Plehniella, Sanguinicola) or dorsal to cecum (Cladocaecum), in middle one-third of body (Kritsky, Nomasanguinicola, Parasanguinicola, Plehniella, Pseudosanguinicola, Sanguinicola) or posterior half of body (Cladocaecum). Vasa efferentia gathering secondary ducts emanating from lateral margins of testicular lobes, coalescing ventrally along midline, forming large seminal column (Pseudosanguinicola, Sanguinicola) or not forming large seminal column (Cladocaecum, Kritsky, Nomasanguinicola, Parasanguinicola, Plehniella), narrowing medially before connecting to vas deferens; vas deferens straight (Cladocaecum, Kritsky, Nomasanguinicola, Parasanguinicola, Pseudosanguinicola, Sanguinicola) or looping (Plehniella), meeting with cirrus sac. Cirrus sac sinistral, post-ovarian thin walled; internal seminal vesicle present; cirrus everting dorsally in sinistral body half (Plehniella) or everting dorsally near midline (Kritsky, Sanguinicola) or indistinct (Cladocaecum, Nomasanguinicola, Parasanguinicola, Pseudosanguinicola), post-cecal body protuberance associated with cirrus present (Plehniella, Sanguinicola) or absent (Cladocaecum, Kritsky, Nomasanguinicola, Parasanguinicola, Pseudosanguinicola), directing dorsally, medial. Common genital atrium and common genital pore present (Plehniella) or absent (Cladocaecum, Kritsky, Nomasanguinicola, Parasanguinicola, Pseudosanguinicola, Sanguinicola); separate genital pores dorsal, post-cecal female genital pore medial (Cladocaecum, Kritsky, Nomasanguinicola, Pseudosanguinicola, Sanguinicola) or exceptionally (purportedly) sinistral (Parasanguinicola), post-ovarian (Cladocaecum, Kritsky, Nomasanguinicola, Pseudosanguinicola, Sanguinicola) or exceptionally (purportedly) pre-ovarian (Parasanguinicola), aspinose. Auxiliary external seminal vesicle absent.
Ovary medial, post-cecal post-testicular can appear butterfly shaped, having deep lobes (Kritsky, Parasanguinicola, Plehniella) or superficial lobes (Cladocaecum, Nomasanguinicola, Pseudosanguinicola, Sanguinicola), as wide as testicular field (Cladocaecum, Kritsky, Pseudosanguinicola, Plehniella, Sanguinicola) or wider than testicular field (Nomasanguinicola, Parasanguinicola). Oviduct a thin-walled duct emanating from ovary, mediodextral, curving slightly sinistrally; oviducal seminal receptacle present. Vitellarium diffuse, symmetrical, follicular, mostly anterior to genital pores; primary vitelline duct single/unpaired, extending posteriad along midline, not forming a transverse vitelline duct or reservoir, connecting with oviduct in posterior body end proximal to and near oötype. Laurer’s canal absent. Oötype spheroid (Cladocaecum, Kritsky, Pseudosanguinicola, Sanguinicola) or oblong (Nomasanguinicola, Parasanguinicola, Plehniella). Uterus short, having ascending portion only (Parasanguinicola, Pseudosanguinicola, Sanguinicola) or ascending and descending portions (Cladocaecum, Kritsky, Nomasanguinicola, Plehniella), not convoluted, not containing sperm; uterine seminal receptacle absent; uterine eggs thin-shelled, not operculate, triangular or ovoid (Parasanguinicola, Sanguinicola) or spheroid (Cladocaecum, Kritsky, Nomasanguinicola) or indistinct (Plehniella, Pseudosanguinicola), lacking discernible miracidium; metraterm robust and strongly muscular (Plehniella) or indistinct (Cladocaecum, Kritsky, Nomasanguinicola, Parasanguinicola, Pseudosanguinicola, Sanguinicola).
Excretory vesicle Y-shaped or a small gland (Parasanguinicola, Sanguinicola) or indistinct (Cladocaecum, Kritsky, Nomasanguinicola, Plehniella); excretory pore terminal. Maturing in blood or body cavity of later-branching ray-finned freshwater fishes (Teleostei).
Differential diagnosis:
Anterior sucker a proboscis with mouth, not pedunculate, having denticles or lacking denticles or having concentric spine rows in small adults or aspinose; mouth comprising a minute pore-like opening; pharynx present or absent; medial esophageal swelling (pouch) present. Intestine comprising short radial ceca of approximate equal length or having anterior ceca plus a single medial and dendritic posterior cecum. Testis with appendix-like lateral lobes, non-sinusoidal. Genital pores common or separate. Laurer’s canal absent. Vitellarium symmetrical. Maturing in blood and body cavity of later-branching freshwater ray-finned fishes (Teleostei).
Remarks
Sanguinicolids primarily infect later-branching freshwater ray-finned fishes (Teleostei) and differ from all other blood flukes by the combination of having a diminutive anterior sucker, a medial esophageal swelling (pouch), short, radial ceca of approximate equal length or having short anterior ceca plus an elongate, dendritic posterior cecum, testis with appendix-like lateral lobes, and no Laurer’s canal. Warren et al. (2023) treated the taxonomic problems and systematics of Sanguinicola.
Sanguinicola maritimus Nolan and Cribb (2005) is the only sanguinicolid that infects a marine fish. The identity of the molluscan intermediate host is indeterminate but could comprise a littoral euryhaline snail, for example. It has some unique morphological features highlighted by Nolan and Cribb (2005) that could warrant proposal of a new sanguinicolid genus. No nucleotide sequence for this species exists in GenBank.
The original description of Parasanguinicola reported that its type species lacked lateral lobes of the testis and had a pre-ovarian female genital pore lateral to the testis, but these features are dubious and need to be confirmed (Herbert and Shaharom-Harrison, 1995).
Aporocotylidae Odhner, 1912, emended
Accepted genera:
Aporocotyle Odhner, 1900; Deontacylix Linton, 1910; Psettarium Goto and Ozaki, 1929; Paradeontacylix Mcintosh, 1934; Cardicola Short, 1953; Psettaroides Lebedev and Mamaev, 1968; Neoparacardicola Yamaguti, 1970; Metaplehniella Lebedev and Parukhin, 1972; Plethorchis Martin, 1975; Pearsonellum Overstreet and Køie, 1978; Pseudocardicola Parukhin, 1985; Cruoricola Herbert, Shaharom-Harrison, and Overstreet, 1994; Elaphrobates Bullard and Overstreet, 2003; Ankistromeces Nolan and Cribb, 2004; Adelomyllos Nolan and Cribb, 2004; Chaulioleptos Nolan and Cribb, 2005; Phthinomita Nolan and Cribb, 2006; Braya Nolan and Cribb, 2006; Littorellicola Bullard, 2010; Skoulekia Alama-Bermejo, Montero, Raga, and Holzer, 2011; Rhaphidotrema Yong and Cribb, 2011; Primisanguis Bullard, 2012; Cardallagium Yong, Cutmore, Jones, Gauthier, and Cribb, 2018; Allocardicola Yong, Cribb, and Cutmore, 2021; Holocentricola Cutmore and Cribb, 2021.
Diagnosis:
Hermaphroditic, asexual reproduction in estuarine and marine polychaetes, lacking encysted metacercaria or second intermediate host, having migratory schistomulum infecting lymphatic and blood vascular system, having adult infecting blood and body cavity of later-branching ray-finned fishes (Euteleosti). Sporocyst present (Cardicola) or absent (Aporocotyle), fusiform (Cardicola), having few or many cercariae (Cardicola). Redia present (Aporocotyle) or absent (Cardicola); fusiform, having many cercariae. Cercaria non-acetabulate apharyngeate, non-ocellate having spinous anterior sucker, lacking body fin and tegumental body spines discernable gonads or genitalia, tail furcae present and symmetrical with fins (Aporocotyle) or absent (Cardicola); undergoing considerable larval development in vertebrate definitive host. Extrauterine eggs embedding in fish gill epithelium and undergoing considerable larval development; miracidium can hatch and emerge from eggs embedded in fish gill epithelium.
Body of adult strongly dorsoventrally flat (Adelomyllos, Allocardicola, Aporocotyle, Braya, Cardallagium, Cardicola, Chauliolaptos, Crouricola, Deontacylix, Elaphrobates, Holocentricola, Littorellicola, Metaplehniella, Neoparacardicola, Paradeontacylix, Pearsonellum, Plethorchis, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or exceptionally cylindrical/threadlike (Ankistromeces, Phthinomita), spinous; head collar, copulatory bursa, acetabulum, and median esophageal pouch or plicate organ lacking. Tegumental body spines distributing in ventrolateral transverse rows or exceptionally having spine bosses (Aporocotyle only), having distally recurved tip (Cardicola, Elaphrobates, Holocentricola, Littorellicola, Paradeontacylix, Pearsonellum, Skoulekia) or not having distally recurved tip (Adelomyllos, Allocardicola, Ankistromeces, Aporocotyle, Cardallagium, Deontacylix, Phthinomita, Psettarium, Rhaphidotrema); rosethorn-shaped spines present in Paradeontacylix only. Anterior sucker diminutive, spheroid, lacking peduncle, having rows of concentric spines anterior to mouth (Adelomyllos, Allocardicola, Ankistromeces, Aporocotyle, Cardicola, Elaphrobates, Holocentricola, Pearsonellum, Phthinomita, Psettarium) or lacking spheroid anterior sucker (Cardallagium, Littorellicola, Metaplehniella, Neoparacardicola, Paradeontacylix, Psettaroides, Rhaphidotrema, Skoulekia); mouth subterminal, comprising a minute pore-like opening. Nervous system well developed or indistinct (Ankistromeces, Phthinomita); dorso- and ventrolateral nerve cords extending for nearly entire body length, forming anterior and posterior nerve commissures; secondary lateral branches indistinct. Sensory papillae present (Cardallagium, Cardicola, Littorellicola, Psettarium, Primisanguis) or absent (Adelomyllos, Ankistromeces, Aporocotyle, Braya, Chaulioleptos, Cruoricola, Deontacylix, Elaphrobates, Holocentricola, Metaplehniella, Neoparacardicola, Paradeontacylix, Pearsonellum, Phthinomita, Plethorchis, Primisanguis, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia). Pharynx absent. Esophagus enveloped by glandular region (Adelomyllos, Aporocotyle, Braya, Cardallagium, Cardicola, Chaulioleptos, Cruoricola, Elaphrobates, Holocentricola, Littorellicola, Metaplehniella, Neoparacardicola, Paradeontacylix, Pearsonellum, Plethorchis, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Skoulekia) or not (Ankistromeces, Deontacylix, Phthinomita, Rhaphidotrema); posterior esophageal swelling absent; having a nearly indistinct posterior swelling in (Adelomyllos only).
Intestine comprising 4 ceca (1 pair of anterior ceca plus 1 pair of posterior ceca) forming an X-shaped configuration (Neoparacardicola) or an H-shaped configuration (Adelomyllos, Ankistromeces, Aporocotyle, Braya, Cardallagium, Cardicola, Chaulioleptos, Crouricola, Deontacylix, Elaphrobates, Holocentricola, Littorellicola, Metaplehniella, Neoparacardicola, Paradeontacylix, Pearsonellum, Phthinomita, Plethorchis, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or anterior ceca secondarily lost (Allocardicola), bifurcating at midline, blind ending; posterior ceca not overlapping corresponding cecum, terminating in the posterior one-third of the body (Ankistromeces, Aporocotyle, Braya, Cardicola, Chaulioleptos, Cruoricola, Elaphrobates, Littorellicola, Paradeontacylix, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or terminating in the middle one-third of the body (Adelomyllos, Allocardicola, Cardallagium, Deontacylix, Holocentricola, Metaplehniella, Pearsonellum, Phthinomita, Plethorchis) or terminating in the anterior one-third of the body (Neoparacardicola). Genitalia restricted to posterior one-fourth of body, post-cecal (Adelomyllos, Allocardicola, Ankistromeces, Braya, Cardicola, Chaulioleptos, Cruoricola, Deontacylix, Elaphorbates, Holocentricola, Metaplehniella, Neoparacardicola, Phthinomita, Plethorchis, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or inter-cecal (Aporocotyle), post-testicular (Ankistromeces, Allocardicola, Aporocotyle, Braya, Cardicola, Cruoricola, Deontacylix, Elaphorbates, Holocentricola, Metaplethniella, Pearsonellum, Plethorchis, Primisanguis, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or inter-testicular (Adelomyllos, Chaulioleptos, Neoparacardicola, Phthinomita, Psettarium), anterior to oötype (Adelomyllos, Allocardicola, Ankistromeces, Aporocotyle, Cardallagium, Chaulioleptos, Cruoricola, Littorellicola, Neoparacardicola, Paradeontcylix, Pearsonellum, Phthinomita, Plethorchis, Primisanguis, Psettarium, Pseudocardicola, Rhaphidotrema, Skoulekia) or posterior to oötype (Cardicola, Elaphrobates, Braya, Deontacylix, Metaplehniella) or female genitalia is anterior to oötype and male genitalia is posterior to oötype (Holocentricola, Psettaroides).
Testis(es) single (Allocardicola, Ankistromeces, Braya, Cardallagium, Cardicola, Cruoricola Elaphrobates, Holocentricola, Metaplehniella, Pearsonellum, Primisanguis, Psettaroides, Skoulekia) or multiple (Adelomyllos, Aporocotyle, Chaulioleptos, Deontacylix, Littorellicola, Neoparacardicola, Paradeontacylix, Phthinomita, Plethorchis, Psettarium, Pseudocardicola, Rhaphidotrema), dendritic (Metaplehniella, Neoparacardicola) or rectangular (Adelomyllos, Allocardicola, Ankistromeces, Braya, Cardallagium, Cardicola, Chaulioleptos, Crouricola, Deontacylix, Elaphrobates, Holocentricola, Pearsonellum, Phthinomita, Primisanguis, Psettarium, Psettaroides, Rhaphidotrema, Skoulekia) or ovoid (Pseudocardicola) or cobblestonelike (Aporocotyle, Paradeontacylix, Plethorchis, Littorellicola); anterior testis(es) pre-ovarian occupying space anterior to genitalia, inter-cecal (Ankistromeces, Aporocotyle, Braya, Cardicola, Chaulioleptos, Cruoricola, Elaphorbates, Littorellicola, Paradeontacylix, Pearsonellum, Phthinomita, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Skoulekia) or post-cecal (Adelomyllos, Allocardicola, Cardallagium, Deontacylix, Holocentricola, Metaplehniella, Neoparacardicola, Plethorchis, Rhaphidotrema); posterior testis post-ovarian occupying space posterior to genitalia, post-cecal. Vasa efferentia coalescing in posteroventral region of testis, uniting into a vas deferens in anterior or posterior margin of testis; vas deferens straight to sinuous. Auxiliary external seminal vesicle present only in Pearsonellum only. Cirrus sac sinistral, pre-ovarian (Aporocotyle, Neoparacardicola), post-ovarian (Adelomyllos, Allocardicola, Ankistromeces, Braya, Cardallagium, Cardicola, Chaulioleptos, Cruoricola, Deontacylix, Elaphrobates, Holocentricola, Littorellicola, Metaplehniella, Paradeontacylix, Pearsonellum, Phthinomita, Plethorchis, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia), thin-walled (the cirrus sac can be indistinct without differential interference contrast optical components); internal seminal vesicle present; cirrus appearing appendix-like when everted; posterolateral body protuberance associated with cirrus present (Ankistromeces, Cardallagium, Cardicola, Holocentricola, Littorellicola, Metaplehniella, Neoparacardicola, Primisanguis, Psettarium, Psettaroides, Skoulekia) or absent (Adelomyllos, Allocardicola, Aporocptyle, Braya, Chaulioleptos, Cruoricola, Deontacylix, Elaphrobates, Paradeontacylix, Pearsonellum, Plethorchis, Pseudocardicola, Rhaphidotrema), directing dorsally. Common genital atrium absent. Genital pores separate, dorsal, sinistral, aspinose, or exceptionally having stylet with Rhaphidotrema only.
Ovary medial (Adelomyllos, Allocardicola, Ankistromeces, Cardallagium, Cardicola, Chaulioleptos, Cruoricola, Deontacylix, Elaphrobates, Littorellicola, Metaplehniella, Paradeontacylix, Pearsonellum, Phthinomita, Plethorchis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or lateral to midline (Braya, Neoparacardicola, Primisanguis), post-testicular (Ankistromeces, Cardallagium, Cardicola, Cruoricola, Deontacylix, Elaphrobates, Littorellicola, Metaplehniella, Paradeontacylix, Pearsonellum, Phthinomita, Plethorchis, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or inter-testicular (Adelomyllos, Chaulioleptos, Neoparacardicola, Phthinomita, Psettarium), having smooth margins (Allocardicola, Ankistromeces, Aporocotyle, Littorellicola, Pearsonellum, Phthinomita, Rhaphidotrema, Skoulekia) or having lobed margins (Adelomyllos, Braya, Cardalllagium, Cardicola, Chaulioleptos, Cruoricola, Deontacylix, Elaphorbates, Holocentricola, Neoparacardicola, Paradeontacylix, Plethorchis, Primisanguis, Psettarium, Psettaroides, Pseudocardicola) or purportedly dendritic (Metaplehniella), having well-differentiated refractive acini. Oviduct a thin-walled duct emanating from ovary, medial (Aporocotyle, Metaplehniella) or dextral (Adelomyllos, Allocardicola, Ankistromeces, Braya, Cardallagium, Cardicola, Chaulioleptos, Cruoricola, Deontacylix, Elaphrobates, Holocentricola, Littorellicola, Neoparacardicola, Paradeontacylix, Pearsonellum, Phthinomita, Plethorchis, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia), straight to sinuous or exceptionally looping in Pseudocardicola only; oviducal seminal receptacle present (Braya, Cardicola, Deontacylix, Elaphrobates, Littorellicola, Paradeontacylix, Pearsonellum) or absent (Adelomyllos, Allocardicola, Ankistromeces, Aporocotyle, Cardallagium, Chaulioleptos, Cruoricola, Holocentricola, Metaplehniella, Neoparacardicola, Phthinomita, Plethorchis, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia). Vitellarium diffuse or densely compacted, extending from cecal bifurcation to genitalia, symmetrical (Allocardicola, Aporocotyle, Braya, Cardallagium, Cardicola, Cruoricola, Deontacylix, Holocentricola, Littorellicola, Metaplehniella, Neoparacardicola, Paradeontacylix, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema) or asymmetrical (Adelomyllos, Ankistromeces, Aporocotyle, Chauliolaptos, Elaphrobates, Pearsonellum, Phthinomita, Plethorchis, Skoulekia), mostly anterior to genital pores, coalescing along midline (Adelomyllos, Allocardicola, Braya, Cardallagium, Cardicola, Cruoricola, Deontacylix, Elaphrobates, Holocentricola, Littorellicola, Metaplehniella, Neoparacardicola, Paradeontacylix, Primisanguis, Psettarium, Psettaroides, Rhaphidotrema, Skoulekia) or coalescing laterally (Ankistromeces, Aporocotyle, Chaulioleptos, Pearsonellum, Phthinomita, Plethorchis, Pseudocardicola); primary vitelline duct single/unpaired, extending posteriad along midline (Adelomyllos, Braya, Cardicola, Cruoricola, Elaphrobates, Metaplehniella, Neoparacardicola, Psettaroides, Skoulekia) or dextral (Ankistromeces, Aporocotyle, Cardallagium, Chaulioleptos, Deontacylix, Holocentricola, Littorellicola, Paradeontacylix, Pearsonellum, Phthinomita, Plethorchis, Primisanguis, Psettarium, Pseudocardicola, Rhaphidotrema), not forming a transverse vitelline duct or reservoir, uniting with oviduct in posterior body end near oötype. Laurer’s canal absent. Oötype spheroid to oblong. Uterus elongate and convoluted (Adelomyllos, Allocardicola, Aporocotyle, Braya, Cardallagium, Cardicola, Cruoricola, Deontacylix, Elaphrobates, Holocentricola, Littorellicola, Metaplehniella, Paradeontacylix, Pearsonellum, Primisanguis, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or straight (Ankistromeces, Chaulioleptos, Phthinomita, Plethorchis), initially extending anteriad from oötype (Adelomyllos, Allocardicola, Ankistromeces, Aporocotyle, Cardallagium, Cruoricola, Deontacylix, Holocentricola, Littorellicola, Metaplehniella, Pearsonellum, Phthinomita, Psettarium, Psettaroides, Pseudocardicola, Rhaphidotrema, Skoulekia) or initially extending slightly posteriad (Braya, Cardicola, Elaphrobates, Paradeontacylix, Primisanguis), curving anteriad along midline, curving posteriad at level of ovary (Adelomyllos, Allocardicola, Braya, Cardallagium, Cardicola, Chaulioleptos, Cruoricola, Elaphrobates, Holocentricola, Littorellicola, Metaplehniella, Paradeontacylix, Phthinomita, Primisanguis, Psettarium, Psettaroides, Rhaphidotrema, Skoulekia), curving posteriad at level of testis (Ankistromeces, Aporocotyle, Deontacylix, Neoparacardicola, Pearsonellum, Plethorchis, Pseudocardicola) or having ascending and descending portions; uterine seminal receptacle present in Primisanguis only; uterine eggs thin shelled, operculate (Pearsonellum) or non-operculate pliable, elongate (Adelomyllos, Braya, Neoparacardicola, Skoulekia) or spheroid (Ankistromeces, Aporocotyle, Cardallagium, Cardicola, Deontacylix, Elaphorbates, Littorellicola, Pearsonellum, Phthinomita, Primisanguis, Psettarium, Rhaphidotrema) or elliptical to ovoid (Chaulioleptos, Cruoricola, Holocentricola, Paradeontacylix, Plethorchis), lacking discernible miracidium; metraterm weakly muscular.
Excretory vesicle V shaped (Plethorchis) or Y shaped (Adelomyllos, Aporocotyle, Cruoricola, Elaphrobates, Littorellicola, Primisanguis, Psettarium, Rhaphidotrema) or a small gland (Ankistromeces, Braya, Cardicola, Chaulioleptos, Holocentricola, Pearsonellum, Phthinomita); excretory pore terminal. Maturing in blood of principally late-branching ray-finned marine fishes (Euteleostei).
Differential diagnosis:
Anterior sucker diminutive, not bowl-shaped, lacking peduncle, spheroid and having rows of concentric spines anterior to mouth or lacking spheroid anterior sucker; mouth comprising a minute pore-like opening; medial esophageal swelling (pouch) absent; pharynx absent. Lateral tegumental spines distributing in ventrolateral transverse rows or spine bosses (Aporocotyle only), not C shaped. Testis(es) non-sinusoidal lacking appendix-like lateral lobes. Intestine comprising 4 ceca (1 pair of anterior ceca plus 1 pair of posterior ceca) forming an X- or H-shaped configuration; anterior ceca long or secondarily lost (Allocardicola only); posterior ceca comprising a pair of elongate ceca each extending posteriad in parallel with respective body margin and terminating in middle or posterior one-third of body or anterior one-third (Neoparacardicola only). Genital pores sinistral or having sinistral common genital pore. Vitellarium asymmetrical or symmetrical. Laurer’s canal absent. Maturing in blood of principally later-branching ray-finned marine fishes (Teleostei).
Remarks
Aporocotylids primarily infect later-branching marine and estuarine ray-finned fishes (Teleostei) and differ from all other blood flukes by the combination of having a spheroid anterior sucker with concentric rows of circumferential spines or the spheroid anterior sucker is lost in the adult or adults have a diminutive anterior sucker, a sinuous esophagus lacking a medial swelling, an X- or H-shaped intestine having 4 ceca, long anterior ceca, long smooth posterior ceca that extend posteriad in parallel with respective body margin and terminate near the posterior body end, testis(es) that lack appendix-like lateral lobes, no Laurer’s canal, and a sinistral common genital pore or separate genital pores that are sinistral.
Three genera (Chanicola Yong, Cribb, and Cutmore, 2021; Spirocaecum Yong, Cribb, and Cutmore, 2021; Balistidicola Cutmore and Cribb, 2022) were recently proposed based on the identities of their definitive hosts, a combination of morphological features common to many genera of Aporocotylidae (sensu stricto, as diagnosed herein), and 28S and ITS2 phylogenetic analyses (Yong et al., 2021; Cutmore and Cribb, 2022). Cutmore and Cribb (2022) asserted that Balistidicola was unique by having short anterior ceca, long posterior ceca, a lanceolate body, a single testis, a post-ovarian uterus, and an oötype that is dextral and anterior to the cirrus sac. The type species of Cardicola (Cardicola cardiocola [Manter, 1947] Short, 1953) has each of those features (Manter, 1947; Short, 1953; Warren et al., 2021). The narrative description as well as Figure 4 of Warren et al. (2021), wherein the type species of Cardicola is redescribed based on the Manter’s holotype and newly collected specimens, clearly shows that this species has each of those features—in particular the oötype is clearly anterior and dextral to the cirrus sac. Further, Cardicola abu Yong, Cutmore, and Cribb, 2018; Cardicola ambrosioi Braicovich, Etchegoin, Timi, and Sardella, 2006; Cardicola coridodacis Manter, 1954; Cardicola currani Bullard and Overstreet, 2004; Cardicola forsteri Cribb, Daintith, and Munday, 2000; Cardicola nonamo Bullard, 2010; Cardicola opisthorchis Ogawa, Ishimaru, Shirakashi, Takami, and Grabner, 2011; Cardicola orientalis Ogawa, Tanaka, Sugihara, and Takami, 2010; Cardicola ahi Yamaguti, 1970 incertae sedis (see Warren et al., 2021); and Cardicola kurochkini (Parukhin, 1976) Bullard and Overstreet, 2006 incertae sedis (see Warren et al., 2021) have this combination of features. Because of these facts, we reassign the type species of Balistidicola to Cardicola as Cardicola corneri (Cutmore and Cribb, 2022) n. comb. as well as reassign Balistidicola yuelao Yong, Cutmore, and Cribb, 2018 as Cardicola yuelao Yong, Cutmore, and Cribb, 2018. The reassignment of the type species of Balistidicola to Cardicola makes the genus a junior subjective synonym of Cardicola.
Regarding Chanicola and Spirocaecum, Yong et al. (2021) stated that these genera were diagnosed with morphological features that do not differentiate them from Cardicola, that is, the diagnoses are not diagnostic. To justify this approach, Yong et al. (2021, p. 1) advocated that, “molecular phylogenetics has shown that emphasizing phenetics alone is unreliable.” These authors detailed their experiential concept of what they called “wastebasket taxonomy” wherein the morphological features they chose failed them in predicting the evolutionary relationships they recovered by their nucleotide-based analyses. We have the antithetical perspective based on available evidence. Our experience is that nucleotide-based phylogenetic reconstruction recovers morphologically similar and diagnosable blood fluke taxa as sharing a common ancestor; correspondingly, the morphological features used by us previously, and herein diagnose and differentiate the monophyletic families (Key) and their genera. Herein, for the lack of functional diagnoses (see previous discussion), we reassign the type species of Chanicola and the type species of Spirocaecum to Cardicola as Cardicola jiigurru Yong, Cutmore, Miller, Wee, and Cribb, 2016 and Cardicola coeptus Nolan and Cribb, 2006, respectively. These reassignments make Chanicola and Spirocaecum junior synonyms of Cardicola. As a result, the additional species are reassigned to Cardicola: Cardicola suni Yong, Cutmore, Miller, Wee, and Cribb, 2016 (formerly Chanicola) as well as the species formerly assigned to Spirocaecum (Cardicola bartolii Nolan and Cribb, 2006; Cardicola covacinae Nolan and Cribb, 2006; Cardicola lafii Nolan and Cribb, 2006; Cardicola tantabiddii Nolan and Cribb, 2006; Cardicola mogilae Brooks, Cribb, Yong and Cutmore, 2017).
We continue to view Cardicola spp. and the Cardicola-like aporocotylids as recently evolved and coradiating with euteleost fishes (Bullard, 2013; Orélis-Ribeiro et al., 2014). This could explain the slight morphological differences between them. Some fish blood fluke genera include species that are morphologically similar but have large nucleotide differences between them (Bullard, 2014; Orélis-Ribeiro et al., 2017; Yong et al., 2018; Warren et al., 2021; Cutmore et al., 2022), and, alternatively, some fish blood flukes that are morphologically easily differentiated have few nucleotide differences (Bullard and Overstreet, 2003; Warren et al., 2021; Yong et al., 2021; Cutmore et al., 2022; Cutmore and Cribb, 2022). Given that there is no direct empirical correlation between morphological similarity/dissimilarity and the corresponding degree of nucleotide similarity for specific lineages of trematodes, we think that it is perilous to assume that tree branch length justifies new genera as suggested by Yong et al. (2021). Without a morphological differential diagnosis, the limits of a genus would be arbitrary (because the tree topology changes upon adding a sequence) and depend on ingroup taxon selection, the marker being used, the methodological details of the phylogenetic analysis, and the outgroup selection.
Key to the families of fish blood flukes based on the morphological diagnoses given previously
-
1a.
Having C-shaped lateral tegumental spines each mounted on a muscular peduncle and having non-sinusoidal testis or lacking lateral tegumental spines and having sinusoidal testis; vitellarium symmetrical or asymmetrical, having a dextral primary vitelline collecting duct. Maturing in blood of sharks, rays, and chimaeras (Chondrichthyes) Chimaerohemecidae Yamaguti, 1971
-
1b.
Lacking C-shaped lateral tegumental spines; lacking sinusoidal testis; vitellarium asymmetrical or symmetrical 2
-
2a.
Anterior sucker robust, bowl shaped, pedunculate; mouth comprising a large opening; pharynx present or absent; lateral tegumental spines spike-like (not C shaped, lacking recurved tip; can be lost in adults of some species); Laurer’s canal present or absent; common genital atrium and pore present 3
-
2b.
Anterior sucker neither bowl shaped nor pedunculate; mouth comprising a minute pore-like opening; Laurer’s canal absent; genital pores separate or common 4
-
3a.
Anterior sucker having minute spines on inner anteroventral surface in adults; tegumental spines distributing in ventrolateral transverse rows, with distal end having a sharp tip protruding slightly from tegument; pharynx present; intestine inverse U shaped (anterior ceca absent) with posterior ceca terminating near the excretory bladder; 6 testes (5 pre-ovarian testes plus 1 post-ovarian testis), inter-cecal having shallow lobes; common genital pore dextral, post-ovarian. Maturing in blood of sturgeons and paddlefishes (Acipenseriformes) Acipensericolidae n. fam.
-
3b.
Anterior sucker aspinose in adults; tegumental spines not distributing in ventrolateral transverse rows, with distal end having a sharp tips enveloped by tegument (adults of Elopicola spp. are aspinose); pharynx present or absent; intestine generally inverse U shaped; anterior ceca short or nearly indistinct; posterior ceca terminating at level of testis (Elopicola)/anterior-most testis (Paracardicoloides); 2 deeply lobed testes (1 pre-ovarian and inter-cecal testis plus 1 post-ovarian and post-cecal testis) (Paracardicoloides) or 1 inter-cecal deeply lobed testis (Elopicola); common genital pore sinistral, pre-ovarian. Egg in gill epithelium of fish host having elongate polar filaments. Maturing in blood of elopomorphs (Teleostei: Elopomorpha) Elopicolidae n. fam.
-
4a.
Medial esophageal swelling (pouch) present; intestine comprising short radial ceca of approximate equal length or having anterior ceca plus a single medial and dendritic posterior cecum; testis with appendix-like lateral lobes; genital pores common or separate. Maturing in blood and body cavity of later-branching freshwater ray-finned fishes (Teleostei) Sanguinicolidae Poche, 1926
-
4b.
Medial esophageal swelling (pouch) absent; pharynx absent; intestine X or H shaped; anterior ceca long or secondarily lost (Allocardicola); posterior ceca comprising a pair of elongate ceca each extending posteriad in parallel with respective body margin and terminating in middle or posterior 1/3 of body or in anterior 1/3 of body (Neoparacardicola); testes lacking appendix-like lateral lobes; genital pores sinistral or having sinistral common genital pore. Maturing in blood or body cavity of later-branching marine ray-finned fishes (Teleostei) Aporocotylidae Odhner, 1912
Phylogenetic remarks
Our 28S phylogeny recovered the fish blood flukes as monophyletic and sister to the remaining blood flukes infecting turtles and homeotherms (Fig. 1; Bullard et al., 2019; Bullard and Dutton, 2022). Each of the morphologically diagnosed families was recovered as monophyletic. This tree resembles most previously published blood fluke trees and comprises the largest taxon sampling for fish blood flukes to date. Acipensericolidae was recovered as a sister to all other fish blood flukes, with 2 main clades comprising Chimaerohemecidae + Sanguinicolidae and Elopicolidae + Aporocotylidae.
DISCUSSION
Testing the so-called “deep cophyly” between blood flukes and their craniate hosts remains a key question in the natural history of blood flukes, including that for the schistosomes (Bullard and Dutton, 2022). Because the natural history of the fish blood flukes explains the origin of the schistosomes, their systematics and host–parasite relationships are of broad interest. Smith (1972) and Maillard (1982) asserted that fish blood flukes showed no evidence of “strict phylogenetic host specificity” at the level of genus or species. However, our current understanding of the fish blood flukes is that (1) morphologically similar, phylogenetically related fish blood flukes mature in phylogenetically related fish lineages (see Key), (2) the branching order (based on 28S phylogenetic analyses) for fish blood flukes does not mirror that for craniates (i.e., the chimaerohemecids are not sister to all blood flukes) but does indicate that marine ray-finned fishes are a late-branching lineage among fish blood flukes, and that (3) the phylogenetic position of these major fish blood fluke lineages (each of which is robustly monophyletic) remains unsettled (Fig. 1; Table I). This new understanding derives mainly from discoveries of fish blood flukes infecting chondrichthyans, early-branching actinopterygians, and other freshwater fishes; all of which previously were underexplored for blood fluke infections (Orélis-Ribeiro et al., 2013, 2014, 2017; Orélis-Ribeiro and Bullard, 2015, 2016; Warren et al., 2017, 2019, 2020, 2021, 2023; Warren and Bullard, 2019, 2021). Further, although few fish blood fluke life cycles are known, 11 from freshwater fishes and 8 from marine fishes (Warren and Bullard, 2019; Cutmore et al., 2022; Table II), the fish blood flukes appear to show some level of specificity (and perhaps some level of cophyly) to/with their molluscan first intermediate hosts (Cribb et al., 2017; Warren and Bullard, 2019; Cutmore et al., 2022).
The blood flukes (Schistosomatoidea) seem to be an old lineage because they mature in collectively all major craniate lineages and exploit a large diversity of intermediate hosts. They mature in hosts belonging to the earliest-branching extant jawed vertebrates (Chondrichthyes), to the early-branching actinopterygians (Acipenseriformes), to the late-branching ray-finned fishes (Tetraodontiformes), and freshwater and marine turtles and homeotherms (birds and mammals). Further, they collectively exploit the greatest diversity of invertebrate hosts of any trematode lineage; undergoing asexual reproduction in bivalves and snails but also polychaetes (Table II). Alternatively, but seemingly less likely, is that the blood flukes recently evolved and rapidly colonized and radiated across the craniate tree of life. Extinct early-branching gnathostome lineages could have harbored blood fluke infections, and those blood flukes would comprise key missing links to piece together the natural history of the blood flukes. For example, a blood fluke could have infected any number of extinct fish lineages (pteraspidomorphs, anaspidomorphs, thelodontomorphs, osteostracomorphs, placodermiomorphs) or the 47 extinct lineages (families and orders) of chondrichthyans (Nelson et al., 2016). However, unless the lateral tegumental spines, for example, are discovered in a fossil fish belonging to 1 of these lineages, we could never know. The most alluring craniates that remain to be explored for blood fluke infections are the extant jawless fishes (monophyletic Agnatha) and stem sarcopterygians (lungfishes [Dipnoi] and coelacanths [Coelacanthomorpha]). Despite having examined limited numbers of lampreys and lungfishes (S. A. Bullard, pers. obs.), no infection has been detected so far. Further, the extant agnathans, lungfishes, and coelacanths are each but a relic of a previously more species-rich lineage. Perhaps this theorized extinction of some fish, turtle, and tetrapod blood fluke lineages explains why robust clades of blood flukes are unsettled regarding their phylogenetic position.
LITERATURE CITED
- Bacha, W. J. 1966. Life history notes on Sanguinicola occidentalis Van Cleave and Mueller, 1932 (Trematoda: Sanguinicolidae) with a redescription of the adult In Program and Abstracts, 41st Annual Meeting, of the American Society of Parasitologists p. 51 Abstract No. 124 [Google Scholar]
- Brant, S. V., Morgan J. A., Mkoji G. M., Snyder S. D., Rajapakse R. P. V. J. and Loker E. S. An approach to revealing blood fluke life cycles, taxonomy, and diversity: Provision of key reference data including DNA sequence from single life cycle stages. Journal of Parasitology. 2006;92:77–88. doi: 10.1645/GE-3515.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullard, S. A. Ecology and evolution of fish blood flukes (Digenea: Aporocotylidae) University of Southern Mississippi; Mississippi: 2007. p. 653. Ph.D. Dissertation. p. [Google Scholar]
- Bullard, S. A. A new species of Cardicola Short, 1953 (Digenea: Aporocotylidae) from the heart and branchial vessels of two surfperches (Perciformes: Embiotocidae) in the eastern Pacific Ocean off California. Journal of Parasitology. 2010a;96:382–388. doi: 10.1645/GE-2325.1. [DOI] [PubMed] [Google Scholar]
- Bullard, S. A. Littorellicola billhawkinsi n. gen., n. sp. (Digenea: Aporocotylidae) from the myocardial lacunae of Florida pompano, Trachinotus carolinus (Carangidae) in the Gulf of Mexico; with a comment on the interrelationships and functional morphology of intertrabecular aporocotylids. Parasitology International. 2010b;59:587–598. doi: 10.1016/j.parint.2010.08.006. [DOI] [PubMed] [Google Scholar]
- Bullard, S. A. Cardicola langeli sp. n. (Digenea: Aporocotylidae) from heart of sheepshead, Archosargus probatocephalus (Actinopterygii: Sparidae) in the Gulf of Mexico, with an updated list of hosts, infection sites and localities for Cardicola spp. Folia Parasitologica. 2013;60:1–17. doi: 10.14411/fp.2013.003. [DOI] [PubMed] [Google Scholar]
- Bullard, S. A. Blood flukes (Digenea: Aporocotylidae) of elopomorphs: Emendation of Paracardicoloides, supplemental observations of Paracardicoloides yamagutii, and a new genus and species from ladyfish, Elops saurus, (Elopiformes: Elopidae) in the Gulf of Mexico. Journal of Parasitology. 2014;100:305–316. doi: 10.1645/13-391.1. [DOI] [PubMed] [Google Scholar]
- Bullard, S. A., Baker T. and de Buron I. New species of Cardicola (Digenea: Aporocotylidae) from heart of Atlantic croaker, Micropogonias undulatus (Perciformes: Sciaenidae), of the South Atlantic Bight. Journal of Parasitology. 2012;98:328–332. doi: 10.1645/GE-2893.1. [DOI] [PubMed] [Google Scholar]
- Bullard, S. A. and Dutton H. R. Resolving the paraphyletic turtle blood flukes: revision of Spirorchiidae Stunkard, 1921 and proposal of Carettacolidae Yamaguti, 1958, Hapalotrematidae (Stunkard, 1921) Poche, 1926, Baracktrematidae n. fam., Plattidae n. fam., and Atamatamidae n. fam. Journal of Parasitology. 2022;108:553–564. doi: 10.1645/22-60. [DOI] [PubMed] [Google Scholar]
- Bullard, S. A. and Jensen K. Blood flukes (Digenea: Aporocotylidae) of stingrays (Myliobatiformes: Dasyatidae): Orchispirium heterovitellatum from Himantura imbricata in the Bay of Bengal and a new genus and species from Dasyatis sabina in the Northern Gulf of Mexico. Journal of Parasitology. 2008;94:1311–1321. doi: 10.1645/GE-1498.1. [DOI] [PubMed] [Google Scholar]
- Bullard, S. A. Jensen K. and Overstreet R. M.. 2009. Historical account of the two family-group names in use for the single accepted family comprising the “fish blood flukes” Acta Parasitology 54 78 84 [Google Scholar]
- Bullard, S. A. and Overstreet R. M.. 2003. Elaphrobates euzeti gen. and sp. n. (Digenea: Sanguinicolidae) from snappers (Lutjanidae) in the Gulf of Mexico In Taxonomie, Ecologie et Evolution des me ´ Tazoaires Parasites. Tome 1 Combes C. and Jourdane J.. (eds.) Presses Universitaires de Perpignan; Perpignan, France: p. 97 113 [Google Scholar]
- Bullard, S. A. and Overstreet R. M.. 2008. Digeneans as enemies of fishes In Fish Diseases CRC Press; Boca Raton, Florida: p. 831 911 [Google Scholar]
- Bullard, S. A., Overstreet R. M. and Carlson J. K. Selachohemecus benzi n. sp. (Digenea: Sanguinicolidae) from the blacktip shark Carcharhinus limbatus in the northern Gulf of Mexico. Systematic Parasitology. 2006;63:143–154. doi: 10.1007/s11230-005-9010-x. [DOI] [PubMed] [Google Scholar]
- Bullard, S. A., Roberts J. R., Warren M. B., Dutton H. R., Whelan N. V., Ruiz C. F., Platt T. R., Tkach V. V., Brant S. V. and Halanych K. M. Neotropical turtle blood flukes: Two new genera and species from the Amazon River basin with a key to genera and comments on a marine-derived parasite lineage in South America. Journal of Parasitology. 2019;105:497–523. [PubMed] [Google Scholar]
- Bullard, S. A., Snyder S. D., Jensen K. and Overstreet R. M. New genus and species of Aporocotylidae (Digenea) from a basal actinopterygian, the American paddlefish, Polyodon spathula, (Polyodontidae) from the Mississippi Delta. Journal of Parasitology. 2008;94:487–495. doi: 10.1645/GE-1323.1. [DOI] [PubMed] [Google Scholar]
- Carvalho, Y. B. M., da Silva Poersch L. H. and Romano L. A. Parasites and pathological condition of two edible clams from the Cassino beach, southern Brazil. Bulletin of the European Association of Fish Pathologists. 2015;35:41–49. [Google Scholar]
- Cribb, T. H., Adlard R. D., Hayward C. J., Bott N. J., Ellis D., Evans D. and Nowak B. F. The life cycle of Cardicola forsteri (Trematoda: Aporocotylidae), a pathogen of ranched southern bluefin tuna, Thunnus maccoyi. International Journal for Parasitology. 2011;41:861–870. doi: 10.1016/j.ijpara.2011.03.011. [DOI] [PubMed] [Google Scholar]
- Cribb, T. H., Chick R. C., O’Conner W., O’Conner S., Johnson D., Sewell K. B. and Cutmore S. C. Evidence that blood flukes (Trematoda: Aporocotylidae) of chondrichthyans infect bivalves as intermediate hosts: Indications of an ancient diversification of the Schistosomatoidea. International Journal for Parasitology. 2017;47:885–891. doi: 10.1016/j.ijpara.2017.05.008. [DOI] [PubMed] [Google Scholar]
- Croft, J. W. A description of Cercaria whitentoni, n. sp. Transactions of the American Microscopical Society. 1933;52:259–266. [Google Scholar]
- Cutmore, S. C. and Cribb T. H. New collections of blood flukes (Aporocotylidae) from fishes of the tropical Indo-west Pacific, including a new genus, two new species and molecular evidence that Elaphrobates chaetodontis (Yamaguti, 1970) is widespread in the region. Parasitology International. 2022;88:102–565. doi: 10.1016/j.parint.2022.102565. [DOI] [PubMed] [Google Scholar]
- Cutmore, S. C., Littlewood D. T. J., Arellano-Martínez M., Louvard C. and Cribb T. H. Evidence that a lineage of teleost-infecting blood flukes (Aporocotylidae) infects bivalves as intermediate hosts. International Journal for Parasitology. 2022;53:13–25. doi: 10.1016/j.ijpara.2022.09.007. [DOI] [PubMed] [Google Scholar]
- De León, G. P. P. and Hernández-Mena D. Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life. Journal of Helminthology. 2019;93:260–276. doi: 10.1017/S0022149X19000191. [DOI] [PubMed] [Google Scholar]
- Ejsmont, L. 1926. Badania morfologiczne, systematyczne I rozwojowe nad gatunkami rodzaju Sanguinicola Plehn. [Morphologische, systematische und entwicklungsgeschichtliche Untersuchungen an Arten des Genus SanguinicolaPlehn.] Bulletin International de l’Academie Polonaise des Sciences et des Lettres, Serie B, Classe des Sciences Mathematiques et Naturelles, Sciences Naturelles, Year 1925 9-10B p. 877 966 [Google Scholar]
- Erickson, D. G. and Wallace F. G.. 1959. Studies on blood flukes of the genus Sanguinicola . Journal of Parasitology 45 310 322 [PubMed] [Google Scholar]
- Fraser, T. H. Contributions to the biology of Tagelus divisus (Tellinacea: Pelecypoda) in Biscayne Bay, Florida. Bulletin of Marine Science. 1967;17:111–132. [Google Scholar]
- Gilardoni, C., Posadas G., Kroeck M. A. and Cremonte F. Monorchiid and aporocotylid cercariae (Digenea) parasitising the purple clam Amiantis purpurata (Bivalvia, Veneridae) from the Southwestern Atlantic coast. Acta Parasitology. 2011;56:385–391. [Google Scholar]
- Herbert, B. W. and Shaharom-Harrison F. M. A new blood fluke, Parasanguinicola vastispina gen. nov., sp. nov. (Trematoda: Sanguinicolidae), from sea bass Lates calcarifer (Centropomidae) cultured in Malaysia. Parasitology Research. 1995;81:349–354. doi: 10.1007/BF00931543. [DOI] [PubMed] [Google Scholar]
- Hoffman, G. L., Fried B. and Harvey J. E. Sanguinicola fontinalis sp. nov. (Digenea: Sanguinicolidae): A blood parasite of brook trout, Salvelinus fontinalis (Mitchill), and longnose dace, Rhinichthys cataractae (Valenciennes) Journal of Fish Diseases. 1985;8:529–538. [Google Scholar]
- Holliman, R. B. Larval trematodes from the Apalachee Bay area, Florida, with a checklist of known marine cercariae arranged in a key to their superfamilies. Tulane Studies in Zoology. 1961;9:2–74. [Google Scholar]
- ICZN . International Code of Zoological Nomenclature. 2nd ed. The International Trust for Zoological Nomenclature; London, U.K: 1999. p. 306 p. [Google Scholar]
- Kirk, R. S. and Lewis J. W. The life cycle and morphology of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae) Systematic Parasitology. 1993;25:125–133. doi: 10.1017/s0031182000060868. [DOI] [PubMed] [Google Scholar]
- Køie, M. The redia, cercaria and early stages of Aporocotyle simplex Odhner, 1900 (Sanguinicolidae)—A digenetic trematode which has a polychaete annelid as the only intermediate host. Ophelia. 1982;21:115–145. [Google Scholar]
- Køie, M. and Peterson M. E. A new annelid intermediate host (Lanassa nordenskioeldi Malmgren, 1866) (Polychaeta: Terebellidae) for Aporocotyle sp. and a new final host family Pisces: Bothidae) for Aporocotyle simplex Odhner, 1900 (Digenea: Sanguinicolidae) Journal of Parasitology. 1988;74:499–502. [Google Scholar]
- Linton, E. Note on trematode sporocysts and cercariae in marine mollusks of the Woods Hole region. Biological Bulletin. 1915;28:198–209. [Google Scholar]
- López, Z., Cárdenas L. and González M. T. Metazoan symbionts of the yellow clam, Mesodesma donacium (Bivalvia), in southern Chile: Geographical variations. Journal of Parasitology. 2014;100:797–804. doi: 10.1645/13-301.1. [DOI] [PubMed] [Google Scholar]
- Maillard, C. Spécificité des trématodes de poissons. Mémoires du Muséum National d’Histoire Naturelle, Paris, Seri A Zoologie. 1982;123:313–317. [Google Scholar]
- Martin, W. E. Cercaria solemyae n. sp., probably a blood fluke, from the marine pelecypod, Solemya velum. Journal of Parasitology. 1944;30:191–195. [Google Scholar]
- Martin, W. E. Another annelid first intermediate host of a digenetic trematode. Journal of Parasitology. 1952;38:1–4. [PubMed] [Google Scholar]
- Manter, H. W. 1947. The digenetic trematodes of marine fishes of Tortugas, Florida American Midland Naturalist 38 257−416 [Google Scholar]
- Matías, M. J., Parietti M. and Etchegoin J. A. Digeneos larvales de Heleobia parchappii y de Heleobia australis en ambientes dulceacuícolas y estuariales de la provincia de Buenos Aires (Argentina) Revista Argentina de Parasitology. 2014;2:14–21. [Google Scholar]
- McCoy, O. R. Notes on cercariae from Missouri. Journal of Parasitology. 1929;15:199–208. [Google Scholar]
- Meade, T. G. 1967. Life history studies on Cardicola klamathensis (Wales, 1958) Meade and Pratt, 1965 (Trematoda: Sanguinicolidae) Proceedings of the Helminthological Society of Washington 34 210 212 [Google Scholar]
- Meade, T. G. and Pratt I. Description and life history of Cardicola alseae sp. n. (Trematoda: Sanguinicolidae) Journal of Parasitology. 1965;51:575–578. [PubMed] [Google Scholar]
- Nelson, J. S., Grande T. C. and Wilson M. V. H. Fishes of the World. 5th ed. John Wiley and Sons; Hoboken, New Jersey: 2016. p. 601 p. [Google Scholar]
- Nikolaeva, V. M. 1985. Trematodes—Didymozoidae fauna, distribution and biology In NOAA Technical Report NMFS 25: Parasitology and Pathology of Marine Organisms of the Ocean Hargis W. J. (ed.) National Marine Fisheries Services; Seattle, Washington: p. 67 72 [Google Scholar]
- Nolan, M. J. and Cribb T. H. The life cycle of Paracardicoloides yamagutii Martin, 1974 (Digenea: Sanguinicolidae) Folia Parasitologica. 2004;51:320–326. doi: 10.14411/fp.2004.040. [DOI] [PubMed] [Google Scholar]
- Nolan, M. J. and Cribb T. H. Sanguinicola maritimus n. sp. (Digenea: Sanguinicolidae) from Labridae (Teleostei: Perciformes) of southern Australian waters. Systematic Parasitology. 2005;61:99–106. doi: 10.1007/s11230-005-3153-7. [DOI] [PubMed] [Google Scholar]
- Notton, D., Michel E., Dale-Skey N., Nikolaeva S. and Tracey S. Best practice in the use of the scientific names of animals: Support for editors of technical journals. Bulletin of Zoological Nomenclature. 2011;68:313–322. [Google Scholar]
- Oglesby, L. C. A new cercaria from an annelid. Journal of Parasitology. 1961;47:233–236. [PubMed] [Google Scholar]
- Orélis-Ribeiro, R., Arias C. R., Halanych K. M., Cribb T. H. and Bullard S. A. Diversity and ancestry of flatworms infecting blood of non-tetrapod craniates “fishes.”. Advances in Parasitology. 2014;85:1–64. doi: 10.1016/B978-0-12-800182-0.00001-5. [DOI] [PubMed] [Google Scholar]
- Orélis-Ribeiro, R. and Bullard S. A. Blood flukes (Digenea: Aporocotylidae) infecting body cavity of South American catfishes (Siluriformes: Pimelodidae): Two new species from rivers in Bolivia, Guyana and Peru with a re-assessment of Plehniella Szidat, 1951. Folia Parasitologica. 2015;62:1–17. doi: 10.14411/fp.2015.050. [DOI] [PubMed] [Google Scholar]
- Orélis-Ribeiro, R. and Bullard S. A. Two new genera of fish blood flukes (Digenea: Aporocotylidae) from catfishes in the Peruvian Amazon. Journal of Parasitology. 2016;102:357–368. doi: 10.1645/15-905. [DOI] [PubMed] [Google Scholar]
- Orélis-Ribeiro, R., Halanych K. M., Dang B. T., Bakenhaster M. D., Arias C. R. and Bullard S. A. Two new species of Elopicola (Digenea: Aporocotylidae) from Hawaiian ladyfish, Elops hawaiensis (South China Sea) and Atlantic tarpon, Megalops atlanticus (Gulf of Mexico) with a comment on monophyly of elopomorph blood flukes. Parasitology International. 2017;66:305–318. doi: 10.1016/j.parint.2017.02.008. [DOI] [PubMed] [Google Scholar]
- Orélis-Ribeiro, R., Ruiz C. F., Curran S. S. and Bullard S. A. Blood flukes (Digenea: Aporocotylidae) of epipelagic lamniforms: Redescription of Hyperandrotrema cetorhini from basking shark (Cetorhinus maximus) and description of a new congener from shortfin mako shark (Isurus oxyrinchus) off Alabama. Journal of Parasitology. 2013;99:835–846. doi: 10.1645/12-125.1. [DOI] [PubMed] [Google Scholar]
- Orellana, E. and Lohrmann K. B. Histopathological assessment of broodstock of the razor clam Ensis macha (Pharidae) from the Tongoy Bay, Chile. Journal of Shellfish Research. 2015;34:367–372. [Google Scholar]
- Preston, D. L., Layden T. J., Segui L. M., Falke L. P., Brant S. V. and Novak M. Trematode parasites exceed aquatic insect biomass in Oregon stream food webs. Journal of Animal Ecology. 2020;90:766–775. doi: 10.1111/1365-2656.13409. [DOI] [PubMed] [Google Scholar]
- Roberts, J. R., Halanych K. M., Arias C. R., Curran S. S. and Bullard S. A. A new species of Spirorchis MacCallum, 1918 (Digenea: Schistosomatoidea) and Spirorchis scripta Stunkard, 1923, infecting river cooter, Pseudemys concinna (Le Conte, 1830), (Testudines: Emydidae) in the Pascagoula River, Mississippi, U.S.A., including an updated phylogeny for Spirorchis spp. Comparative Parasitology. 2018;85:120–132. [Google Scholar]
- Schell, S. C. The life history of Sanguinicola idahoensis sp. n. (Trematoda: Sanguinicolidae), a blood parasite of steelhead trout, Salmo gairdneri Richardson. Journal of Parasitology. 1974;60:561–566. [PubMed] [Google Scholar]
- Shirakashi, S., Tani K., Ishimaru K., Shin S. P., Honryo T., Uchida H. and Ogawa K. Discovery of intermediate hosts for two species of blood flukes Cardicola orientalis and Cardicola forsteri (Trematoda: Aporocotylidae) infecting Pacific bluefin tuna in Japan. Parasitology International. 2016;65:128–136. doi: 10.1016/j.parint.2015.11.003. [DOI] [PubMed] [Google Scholar]
- Short, R. B. A new blood fluke, Cardicola laruei n. g., n. sp., (Aporocotylidae) from marine fishes. Journal of Parasitology. 1953;39:304–309. [PubMed] [Google Scholar]
- Siegel, S. V., Rivero A. V., Oberstaller J., Colon B. L., de Buron I. and Kyle D. E. Blood flukes Cardicola parvus and C. laruei (Trematoda: Aporocotylidae): Life cycles and cryptic infection in spotted seatrout, Cynoscion nebulosus (Teleost: Sciaenidae) Parasitology International. 2018;67:150–158. doi: 10.1016/j.parint.2017.10.012. [DOI] [PubMed] [Google Scholar]
- Simon-Martin, F., Rojo-Vazquez F. A. and Simon-Vicente F. Sanguinicola rutili n. sp. (Digenea: Sanguinicolidae) parasito del sistema circulatorio de Rutilus arcasi (Cyprinidae) en la provincia de Salamanca. Revista Iberica de Parasitologia. 1987;47:253–261. [Google Scholar]
- Smith, J. W. The blood flukes (Digenea: Sanguinicolidae and Spirorchidae) of cold-blooded vertebrates and some comparison with the schistosomes [Review article] Helminthological Abstracts. 1972;41:161–204. [Google Scholar]
- Smith, J. W. The blood flukes (Digenea: Sanguinicolidae and Spirorchidae) of cold- blooded vertebrates: Part 1. A review of the published literature since 1971, and bibliography. Helminthological Abstracts. 1997a;66:255294. [Google Scholar]
- Smith, J. W. The blood flukes (Digenea: Sanguinicolidae and Spirorchidae) of cold- blooded vertebrates: Part 2. Appendix I: Comprehensive parasite–host list; Appendix II: Comprehensive host–parasite list. Helminthological Abstracts. 1997b;66:329–344. [Google Scholar]
- Smith, J. W. 2002. Family Sanguinicolidae von Graff, 1907 In Keys to Trematoda Vol. 1 Gibson D. I. Jones A. and Bray R. A.. (eds.) CAB International and The Natural History Museum; London, U.K: p. 433 452 [Google Scholar]
- Stunkard, H. W. The marine cercariae of the Woods Hole, Massachusetts region, a review and a revision. Biological Bulletin. 1983;164:143–162. [Google Scholar]
- Sugihara, Y., Tamada T., Tamaki A., Yamanishi R. and Kanai K. Larval stages of the bluefin tuna blood fluke Cardicola opisthorchis (Trematoda: Aporocotylidae) found from Terebella sp. (Polychaeta: Terebellidae) Parasitology International. 2014;63:295–299. doi: 10.1016/j.parint.2013.11.010. [DOI] [PubMed] [Google Scholar]
- Truong, T. N. and Bullard S. A. Blood flukes (Digenea: Aporocotylidae) of walking catfishes (Siluriformes: Clariidae): New genus and species from the Mekong River (Vietnam) with comments on related catfish aporocotylids. Folia Parasitologica. 2013;60:237. doi: 10.14411/fp.2013.027. [DOI] [PubMed] [Google Scholar]
- Van der Land, J. A new blood fluke (Trematoda) from Chimaera monstrosa L. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Section C, Biological and Medical Sciences. 1967;70:110–120. [Google Scholar]
- Vázquez, N., Perez Bruno E., Márquez F., Van der Molen S., Gilardoni C. and Cremonte F. A histopathological survey of the razor clam Ensis macha (Pharidae) along the Patagonian Argentina coast. Journal of Invertebrate Pathology. 2013;112:253–259. doi: 10.1016/j.jip.2012.12.004. [DOI] [PubMed] [Google Scholar]
- Wales, J. H. Two new blood flukes of trout. California Fish and Game. 1958;44:125–136. [Google Scholar]
- Wardle, W. J. A new marine cercaria (Digenea: Aporocotylidae) from the southern quahog Mercenaria campechiensis. Contributions to Marine Science. 1979;22:53–56. [Google Scholar]
- Warren, M. B., Bakenhaster M. D., Dutton H. R., Ksepka S. P. and Bullard S. A. Redescription of the type species of Cardicola Short, 1953 (Digenea: Schistosomatoidea) and description of a new congener infecting yellowedge grouper, Hyporthodus flavolimbatus (Perciformes: Serranidae) from the Gulf of Mexico. Journal of Parasitology. 2021;107:59–73. doi: 10.1645/20-89. [DOI] [PubMed] [Google Scholar]
- Warren, M. B., Bakenhaster M. D., Scharer R. M., Poulakis G. R. and Bullard S. A. A new genus and species of fish blood fluke, Achorovermis testisinuosus gen. et sp. nov. (Digenea: Aporocotylidae), infecting the critically endangered smalltooth sawfish, Pristis pectinata (Rhinopristiformes: Pristidae) in the Gulf of Mexico. Folia Parasitologica. 2020;67 doi: 10.14411/fp.2020.009. 009. [DOI] [PubMed] [Google Scholar]
- Warren, M. B. and Bullard S. A. First elucidation of a blood fluke (Electrovermis zappum n. gen., n. sp.) life cycle including a chondrichthyan or bivalve. International Journal for Parasitology: Parasites and Wildlife. 2019;10:170–183. doi: 10.1016/j.ijppaw.2019.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren, M. B. and Bullard S. A. Fish blood flukes (Digenea: Aporocotylidae) from Indonesia: Two new genera and species infecting the banded eagle ray, Aetomylaeus nichofii (Bloch and Sneider, 1801) (Myliobatiformes: Myliobatidae) from Borneo. International Journal for Parasitology: Parasites and Wildlife. 2021;15:43–50. doi: 10.1016/j.ijppaw.2021.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren, M. B., Poddubnaya L. G., Zhokhov A. E., Reyda F. B., Choudhury A. and Bullard S. A. Revision of Sanguinicola Plehn, 1905 with redescription of Sanguinicola volgensis (Rašín, 1929) McIntosh, 1934, description of a new species, proposal of a new genus, and phylogenetic analysis. Journal of Parasitology. 2023;109:296–321. doi: 10.1645/23-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren M. B., Roberts J. R., Arias C. R., Koenigs R. P. and Bullard S. A. Acipensericola glacialis n. sp. (Digenea: Aporocotylidae) from heart of lake sturgeon Acipenser fulvescens Rafinesque (Acipenseriformes: Acipenseridae) in the Great Lakes Bain, Lake Winnebago system, USA. Systematic Parasitology. 2017;94:875–889. doi: 10.1007/s11230-017-9751-3. [DOI] [PubMed] [Google Scholar]
- Warren, M. B., Ruiz C. F., Whelan N. V., Kritsky D. C. and Bullard S. A. Gymnurahemecus bulbosus gen. et sp. nov. (Digenea: Aporocotylidae) infecting smooth butterfly rays, Gymnura micrura (Myliobatiformes: Gymnuridae) in the northern Gulf of Mexico, with a taxonomic key and further evidence for monophyly of chondrichthyan blood flukes. Parasitology Research. 2019;118:751–762. doi: 10.1007/s00436-018-06202-9. [DOI] [PubMed] [Google Scholar]
- Whelan, N. V., Johnson P. D., Garner J. T., Garrison N. L. and Strong E. E. Prodigious polyphyly in Pleuroceridae (Gastropoda: Cerithioidea) Bulletin of the Society of Systematic Biologists. 2022;1:8419. doi: 10.18061/bssb.v1i2.8419. [DOI] [Google Scholar]
- Yamaguti, S. 1958. Systema Helminthum Volume 1 The Digenetic Trematodes of Vertebrates Interscience; New York, New York: 979 p [Google Scholar]
- Yamaguti, S. Synopsis of digenetic trematodes of vertebrates. Vols. I and II. Keigaku Publishing Company; Tokyo, Japan: 1971. p. 1074 p. [Google Scholar]
- Yee-Duarte, J. A., Ceballos-Vázquez B. P., Shumilin E., Kidd K. A. and Arellano-Martínez M. Parasitic castration of chocolate clam Megapitaria squalida (Sowerby, 1835) caused by trematode larvae. Journal of Shellfish Research. 2017;36:593–599. [Google Scholar]
- Yong, R. Q., Cribb T. H. and Cutmore S. C. Molecular phylogenetic analysis of the problematic genus Cardicola (Digenea: Aporocotylidae) indicates massive polyphyly, dramatic morphological radiation and host-switching. Molecular Phylogenetics and Evolution. 2021;164:107–290. doi: 10.1016/j.ympev.2021.107290. [DOI] [PubMed] [Google Scholar]
- Yong, R. Y., Cutmore S. C., Jones M. K., Gauthier A. R. G. and Cribb T. H. A complex of the blood fluke genus Psettarium (Digenea: Aporocotylidae) infecting tetraodontiform fishes of east Queensland waters. Parasitology International. 2018;67:321–340. doi: 10.1016/j.parint.2017.12.003. [DOI] [PubMed] [Google Scholar]

