Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Nov 10:2023.07.12.548762. [Version 2] doi: 10.1101/2023.07.12.548762

FoxP3 recognizes microsatellites and bridges DNA through multimerization

Wenxiang Zhang, Fangwei Leng, Xi Wang, Ricardo N Ramirez, Jinseok Park, Christophe Benoist, Sun Hur
PMCID: PMC10659269  PMID: 37986949

Abstract

FoxP3 is a transcription factor (TF) essential for development of regulatory T cells (Tregs), a branch of T cells that suppress excessive inflammation and autoimmunity 1-5 . Molecular mechanisms of FoxP3, however, remain elusive. We here show that FoxP3 utilizes the Forkhead domain––a DNA binding domain (DBD) that is commonly thought to function as a monomer or dimer––to form a higher-order multimer upon binding to T n G repeat microsatellites. A cryo-electron microscopy structure of FoxP3 in complex with T 3 G repeats reveals a ladder-like architecture, where two double-stranded DNA molecules form the two “side rails” bridged by five pairs of FoxP3 molecules, with each pair forming a “rung”. Each FoxP3 subunit occupies TGTTTGT within the repeats in the manner indistinguishable from that of FoxP3 bound to the Forkhead consensus motif (FKHM; TGTTTAC). Mutations in the “intra-rung” interface impair T n G repeat recognition, DNA bridging and cellular functions of FoxP3, all without affecting FKHM binding. FoxP3 can tolerate variable “inter-rung” spacings, explaining its broad specificity for T n G repeat-like sequences in vivo and in vitro . Both FoxP3 orthologs and paralogs show similar T n G repeat recognition and DNA bridging. These findings thus reveal a new mode of DNA recognition that involves TF homo-multimerization and DNA bridging, and further implicates microsatellites in transcriptional regulation and diseases.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES