Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Dec;70(6):1673–1677. doi: 10.1104/pp.70.6.1673

Non-Mendelian Inheritance of 3-(3,4-Dichlorophenyl)-1,1-dimethylurea-Resistant Thylakoid Membrane Properties in Chlamydomonas1

Ruth E Galloway 1,2, Laurens Mets 1,3
PMCID: PMC1065953  PMID: 16662742

Abstract

A uniparentally inherited 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-resistant mutant of Chlamydomonas reinhardii, Dr2, which has a resistance mechanism of the type defined as `primary,' has been isolated. In vitro Hill reactions catalyzed by isolated thylakoid membranes reveal a reduced apparent affinity of the thylakoids for DCMU. These changes in membrane properties quantitatively account for the resistance of mutant Dr2 to herbicide inhibition of growth. The properties of this mutant show that all of the Hill reaction-inhibiting DCMU binding sites are under identical genetic control. Mutant Dr2 is a useful new uniparental genetic marker, since it has a novel phenotype and it may be possible to identify its altered gene product. The low cross-resistance of Dr2 to atrazine suggests that there may be considerable flexibility in exploiting induced herbicide resistance of crop plants for improving herbicide specificity.

Four mendelian mutants in at least three loci all have resistance mechanisms in the class we define as `secondary.' They are as sensitive as wild type to in vitro inhibition of the Hill reaction, and must acquire resistance in vivo by preventing the active form of the herbicide from reaching the sensitive site.

Full text

PDF
1673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arntzen C. J., Ditto C. L., Brewer P. E. Chloroplast membrane alterations in triazine-resistant Amaranthus retroflexus biotypes. Proc Natl Acad Sci U S A. 1979 Jan;76(1):278–282. doi: 10.1073/pnas.76.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowes J., Crofts A. R., Arntzen C. J. Redox Reactions on the reducing side of photosystem II in chloroplasts with altered herbicide binding properties. Arch Biochem Biophys. 1980 Apr 1;200(2):303–308. doi: 10.1016/0003-9861(80)90359-8. [DOI] [PubMed] [Google Scholar]
  3. Chua N. H., Bennoun P. Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in photosystem II reaction center. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2175–2179. doi: 10.1073/pnas.72.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darr S., Souza Machado V., Arntzen C. J. Uniparental inheritance of a chloroplast photosystem II polypeptide controlling herbicide binding. Biochim Biophys Acta. 1981 Jan 14;634(1):219–228. doi: 10.1016/0005-2728(81)90140-7. [DOI] [PubMed] [Google Scholar]
  5. Gardner G. Azidoatrazine: photoaffinity label for the site of triazine herbicide action in chloroplasts. Science. 1981 Feb 27;211(4485):937–940. doi: 10.1126/science.211.4485.937. [DOI] [PubMed] [Google Scholar]
  6. Grant D. M., Gillham N. W., Boynton J. E. Inheritance of chloroplast DNA in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6067–6071. doi: 10.1073/pnas.77.10.6067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horton P. The effect of redox potential on the kinetics of fluorescence induction in pea chloroplasts. I. Removal of the slow phase. Biochim Biophys Acta. 1981 Mar 12;635(1):105–110. doi: 10.1016/0005-2728(81)90011-6. [DOI] [PubMed] [Google Scholar]
  8. Izawa S., Good N. E. The number of sites sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea,3-(4-chlorophenyl)-1,1-dimethylurea and 2-chloro-4-(2-propylamino)-6-ethylamino-s-triazine in isolated chloroplasts. Biochim Biophys Acta. 1965 May 25;102(1):20–38. doi: 10.1016/0926-6585(65)90200-1. [DOI] [PubMed] [Google Scholar]
  9. Levine R. P., Gorman D. S. Photosynthetic electron transport chain of Chlamydomonas reinhardi. 3. Light-induced absorbance changes in chloroplast fragments of the wild type and mutant strains. Plant Physiol. 1966 Oct;41(8):1293–1300. doi: 10.1104/pp.41.8.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mattoo A. K., Pick U., Hoffman-Falk H., Edelman M. The rapidly metabolized 32,000-dalton polypeptide of the chloroplast is the "proteinaceous shield" regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1572–1576. doi: 10.1073/pnas.78.3.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Melis A., Homann P. H. Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol. 1976 May;23(5):343–350. doi: 10.1111/j.1751-1097.1976.tb07259.x. [DOI] [PubMed] [Google Scholar]
  12. Pfister K., Radosevich S. R., Arntzen C. J. Modification of Herbicide Binding to Photosystem II in Two Biotypes of Senecio vulgaris L. Plant Physiol. 1979 Dec;64(6):995–999. doi: 10.1104/pp.64.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pfister K., Steinback K. E., Gardner G., Arntzen C. J. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc Natl Acad Sci U S A. 1981 Feb;78(2):981–985. doi: 10.1073/pnas.78.2.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pillai P., John J. B. Lipid composition of chloroplast membranes from weed biotypes differentially sensitive to triazine herbicides. Plant Physiol. 1981 Sep;68(3):585–587. doi: 10.1104/pp.68.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shepherd H. S., Boynton J. E., Gillham N. W. Mutations in nine chloroplast loci of Chlamydomonas affecting different photosynthetic functions. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1353–1357. doi: 10.1073/pnas.76.3.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thielen A. P., van Gorkom H. J. Quantum efficiency and antenna size of photosystems II alpha, II beta and I in tobacco chloroplasts. Biochim Biophys Acta. 1981 Mar 12;635(1):111–120. doi: 10.1016/0005-2728(81)90012-8. [DOI] [PubMed] [Google Scholar]
  17. Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta. 1977 Apr 11;460(1):113–125. doi: 10.1016/0005-2728(77)90157-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES