Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 Mar;71(3):513–518. doi: 10.1104/pp.71.3.513

Modulation of NADP-Malate Dehydrogenase Activity in Maize Mesophyll Chloroplasts 1

Richard C Leegood 1, David A Walker 1
PMCID: PMC1066069  PMID: 16662858

Abstract

When intact mesophyll chloroplasts of Zea mays var Kelvedon Glory were illuminated, activation of NADP-malate dehydrogenase occurred. Activity declined rapidly on darkening. Light activation of the enzyme was very much greater in the presence of pyruvate (∼10- to 20-fold) than with the electron acceptors 3-phosphoglycerate or oxaloacetate present (∼2-fold). Following preillumination in the presence of pyruvate, addition of 3-phosphoglycerate, oxaloacetate, or nitrite substantially diminished the activity of NADP-malate dehydrogenase. In these circumstances, with pyruvate and 3-phosphoglycerate present, activity could be restored by the addition of nigericin or dihydroxyacetone phosphate. Nigericin also restored activity with both oxaloacetate and pyruvate present. The effect of nitrite was more marked in the presence of low concentrations of DCMU.

These observations are discussed in terms of the dependence of enzyme activity upon the redox state of ferredoxin and electron carriers; the redox state of the latter was estimated by analysis of the DCMU-induced relaxation kinetics of chlorophyll fluorescence quenching in the presence of different substrates.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baier D., Latzko E. Properties and regulation of C-1-fructose-1,6-diphosphatase from spinach chloroplasts. Biochim Biophys Acta. 1975 Jul 8;396(1):141–148. doi: 10.1016/0005-2728(75)90197-8. [DOI] [PubMed] [Google Scholar]
  3. Day D. A., Hatch M. D. Transport of 3-phosphoglyceric acid, phosphoenolpyruvate, and inorganic phosphate in maize mesophyll chloroplasts,, and the effect of 3-phosphoglyceric acid on malate and phosphoenolpyruvate production. Arch Biochem Biophys. 1981 Oct 15;211(2):743–749. doi: 10.1016/0003-9861(81)90511-7. [DOI] [PubMed] [Google Scholar]
  4. Edwards G. E., Robinson S. P., Tyler N. J., Walker D. A. Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat: influence of orthophosphate, pyrophosphate, and adenylates. Plant Physiol. 1978 Aug;62(2):313–319. doi: 10.1104/pp.62.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hallberg M., Larsson C. Compartmentation and export of 14CO2 fixation products in mesophyll protoplasts from the C4-plant Digitaria sanguinalis. Arch Biochem Biophys. 1981 Apr 15;208(1):121–130. doi: 10.1016/0003-9861(81)90130-2. [DOI] [PubMed] [Google Scholar]
  6. Huber S. C., Edwards G. E. Studies on the pathway of cyclic electron flow in mesophyll chloroplasts of a C4 plant. Biochim Biophys Acta. 1976 Dec 6;449(3):420–433. doi: 10.1016/0005-2728(76)90153-5. [DOI] [PubMed] [Google Scholar]
  7. Jacquot J. P., Buchanan B. B. Enzyme Regulation in C(4) Photosynthesis : PURIFICATION AND PROPERTIES OF THIOREDOXIN-LINKED NADP-MALATE DEHYDROGENASE FROM CORN LEAVES. Plant Physiol. 1981 Aug;68(2):300–304. doi: 10.1104/pp.68.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson H. S., Hatch M. D. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis. Biochem J. 1970 Sep;119(2):273–280. doi: 10.1042/bj1190273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lara C., de la Torre A., Buchanan B. B. A new protein factor functional in the ferredoxin-independent light activation of chloroplast fructose 1,6-bisphosphatase. Biochem Biophys Res Commun. 1980 Mar 28;93(2):544–551. doi: 10.1016/0006-291x(80)91111-0. [DOI] [PubMed] [Google Scholar]
  10. Leegood R. C., Walker D. A. Autocatalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplasts. Arch Biochem Biophys. 1980 Apr 1;200(2):575–582. doi: 10.1016/0003-9861(80)90389-6. [DOI] [PubMed] [Google Scholar]
  11. Leegood R. C., Walker D. A. Regulation of fructose-1,6-biphosphatase activity in intact chloroplasts. Studies of the mechanism of inactivation. Biochim Biophys Acta. 1980 Dec 3;593(2):362–370. doi: 10.1016/0005-2728(80)90073-0. [DOI] [PubMed] [Google Scholar]
  12. Lehner K., Heldt H. W. Dicarboxylate transport across the inner membrane of the chloroplast envelope. Biochim Biophys Acta. 1978 Mar 13;501(3):531–544. doi: 10.1016/0005-2728(78)90119-6. [DOI] [PubMed] [Google Scholar]
  13. Powles S. B., Chapman K. S., Whatley F. R. Effect of photoinhibitory treatments on the activity of light-activated enzymes of c(3) and c(4) photosynthetic carbon metabolism. Plant Physiol. 1982 Feb;69(2):371–374. doi: 10.1104/pp.69.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rosa L., Whatley F. R. Uncouplers stimulate photosynthesis in intact chloroplasts by enhancing light-activation of enzymes regulated by the ferredoxin-thioredoxin system. Plant Physiol. 1981 Aug;68(2):364–370. doi: 10.1104/pp.68.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schürmann P., Jacquot J. P. Improved in vitro light activation and assay systems for two spinach chloroplast enzymes. Biochim Biophys Acta. 1979 Aug 15;569(2):309–312. doi: 10.1016/0005-2744(79)90067-6. [DOI] [PubMed] [Google Scholar]
  16. Soulié J. M., Buc J., Meunier J. C., Pradel J., Ricard J. Molecular properties of chloroplastic thioredoxin f and the photoregulation of the activity of fructose 1,6-bisphosphatase. Eur J Biochem. 1981 Oct;119(3):497–502. doi: 10.1111/j.1432-1033.1981.tb05635.x. [DOI] [PubMed] [Google Scholar]
  17. Vernotte C., Etienne A. L., Briantais J. M. Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta. 1979 Mar 15;545(3):519–527. doi: 10.1016/0005-2728(79)90160-9. [DOI] [PubMed] [Google Scholar]
  18. Woodrow I. E., Walker D. A. Light-mediated activation of stromal sedoheptulose bisphosphatase. Biochem J. 1980 Dec 1;191(3):845–849. doi: 10.1042/bj1910845. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES