Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 Mar;71(3):574–581. doi: 10.1104/pp.71.3.574

Relationship between Photosynthesis and Respiration

The Effect of Carbohydrate Status on the Rate of CO2 Production by Respiration in Darkened and Illuminated Wheat Leaves

Joaquín Azcón-Bieto 1, C Barry Osmond 1
PMCID: PMC1066080  PMID: 16662869

Abstract

The rate of dark CO2 efflux from mature wheat (Triticum aestivum cv Gabo) leaves at the end of the night is less than that found after a period of photosynthesis. After photosynthesis, the dark CO2 efflux shows complex dependence on time and temperature. For about 30 minutes after darkening, CO2 efflux includes a large component which can be abolished by transferring illuminated leaves to 3% O2 and 330 microbar CO2 before darkening. After 30 minutes of darkness, a relatively steady rate of CO2 efflux was obtained. The temperature dependence of steady-state dark CO2 efflux at the end of the night differs from that after a period of photosynthesis. The higher rate of dark CO2 efflux following photosynthesis is correlated with accumulated net CO2 assimilation and with an increase in several carbohydrate fractions in the leaf. It is also correlated with an increase in the CO2 compensation point in 21% O2, and an increase in the light compensation point. The interactions between CO2 efflux from carbohydrate oxidation and photorespiration are discussed. It is concluded that the rate of CO2 efflux by respiration is comparable in darkened and illuminated wheat leaves.

Full text

PDF
574

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beevers H. Conceptual developments in metabolic control, 1924-1974. Plant Physiol. 1974 Oct;54(4):437–442. doi: 10.1104/pp.54.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Day D. A., Hanson J. B. Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol. 1977 Apr;59(4):630–635. doi: 10.1104/pp.59.4.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heichel G. H. Response of Respiration of Tobacco Leaves in Light and Darkness and the CO(2) Compensation Concentration to Prior Illumination and Oxygen. Plant Physiol. 1971 Aug;48(2):178–182. doi: 10.1104/pp.48.2.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Platt S. G., Plaut Z., Bassham J. A. Steady-state photosynthesis in alfalfa leaflets: effects of carbon dioxide concentration. Plant Physiol. 1977 Aug;60(2):230–234. doi: 10.1104/pp.60.2.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Saglio P. H., Pradet A. Soluble Sugars, Respiration, and Energy Charge during Aging of Excised Maize Root Tips. Plant Physiol. 1980 Sep;66(3):516–519. doi: 10.1104/pp.66.3.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Smith E. W., Tolbert N. E., Ku H. S. Variables Affecting the CO(2) Compensation Point. Plant Physiol. 1976 Aug;58(2):143–146. doi: 10.1104/pp.58.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Tetley R. M., Thimann K. V. The Metabolism of Oat Leaves during Senescence: I. Respiration, Carbohydrate Metabolism, and the Action of Cytokinins. Plant Physiol. 1974 Sep;54(3):294–303. doi: 10.1104/pp.54.3.294. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES