Abstract
The phosphorylation technique was used to assess the role of Mg in the red beet (Beta vulgaris L.) plasma membrane ATPase. When an excess of ethylenediaminetetraacetate (Tris salt, pH 6.5) was added to phosphorylation reactions at steady-state, the phosphorylation level declined exponentially and the rate constant for dephosphorylation was similar to that observed when phosphorylation reactions were chased with unlabeled ATP. When KCl was included with the EDTA chase, a 2.4-fold increase in the turnover of the phosphoenzyme was observed. Thus, the formation of the phosphorylated intermediate but not its breakdown requires free Mg to be present. When an excess of unlabeled ATP containing MgSO4 was added to plasma membranes incubated for 20 seconds with [γ-32P]ATP in the absence of MgSO4, a burst of phosphorylation was observed that declined exponentially. The rate constant for this decline was similar to that observed for phosphoenzyme turnover after initial labeling in the presence of MgSO4. Extrapolation of this kinetic plot to zero time indicated that ATP binding can occur when MgSO4 is absent. It is proposed that Mg has a specific role in the transphosphorylation reaction of the terminal phosphate group of ATP to the enzyme.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balke N. E., Hodges T. K. Plasma membrane adenosine triphosphatase of oat roots: activation and inhibition by mg and ATP. Plant Physiol. 1975 Jan;55(1):83–86. doi: 10.1104/pp.55.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briskin D. P., Leonard R. T. Partial characterization of a phosphorylated intermediate associated with the plasma membrane ATPase of corn roots. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6922–6926. doi: 10.1073/pnas.79.22.6922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briskin D. P., Leonard R. T. Phosphorylation of the adenosine triphosphatase in a deoxycholate-treated plasma membrane fraction from corn roots. Plant Physiol. 1982 Nov;70(5):1459–1464. doi: 10.1104/pp.70.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briskin D. P., Poole R. J. Characterization of a k-stimulated adenosine triphosphatase associated with the plasma membrane of red beet. Plant Physiol. 1983 Feb;71(2):350–355. doi: 10.1104/pp.71.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briskin D. P., Poole R. J. Characterization of a k-stimulated adenosine triphosphatase associated with the plasma membrane of red beet. Plant Physiol. 1983 Feb;71(2):350–355. doi: 10.1104/pp.71.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goffeau A., Slayman C. W. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981 Dec 30;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
- Hobbs A. S., Albers R. W. The structure of proteins involved in active membrane transport. Annu Rev Biophys Bioeng. 1980;9:259–291. doi: 10.1146/annurev.bb.09.060180.001355. [DOI] [PubMed] [Google Scholar]
- Knowles J. R. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem. 1980;49:877–919. doi: 10.1146/annurev.bi.49.070180.004305. [DOI] [PubMed] [Google Scholar]
- Maloney P. C. Energy coupling to ATP synthesis by the proton-translocating ATPase. J Membr Biol. 1982;67(1):1–12. doi: 10.1007/BF01868643. [DOI] [PubMed] [Google Scholar]
- Sarkadi B. Active calcium transport in human red cells. Biochim Biophys Acta. 1980 Sep 30;604(2):159–190. doi: 10.1016/0005-2736(80)90573-8. [DOI] [PubMed] [Google Scholar]