Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 Aug;72(4):931–937. doi: 10.1104/pp.72.4.931

Role of Osmotic Potential Gradients during Water Stress and Leaf Senescence in Fragaria virginiana1

Sharman D O'Neill 1
PMCID: PMC1066352  PMID: 16663141

Abstract

The physiological basis underlying differences in sensitivity of different aged leaves to water stress was investigated in Fragaria virginiana Duchesne. Differential susceptibility of only older leaves to water stress in the field during summer months appeared related to gradients in leaf osmotic potential within the plant and by an age dependency in the ability of leaves to adjust osmotically when challenged by periodic water deficits. Under greenhouse conditions, older leaves senesced invariably during an imposed water stress while control leaves of comparable age and stressed younger leaves remained green. Osmotic potentials of intermediate aged and younger leaves became approximately 1 to 2 bars lower after a single cycle of imposed stress and up to 10 bars lower after two cycles of stress. Pronounced gradients in leaf osmotic potential within individual whole plants were observed following two cycles of water stress that were significantly different from control values. Osmotic adjustment was dependent on leaf age with the greatest capacity for adjustment in the intermediate aged leaves. Loss of osmotic adjustment was rapid upon rewatering with a half-life of 4 days. An irreversible component of adjustment was observed, amounting to about 10% (or 2 bars) of the maximally adjusted state. This irreversible component could be accounted for in part by significant changes in cell size and other anatomical alterations in the leaf that affect cellular osmotic volume, and, hence, cellular water relations.

Full text

PDF
931

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begg J. E., Turner N. C. Water potential gradients in field tobacco. Plant Physiol. 1970 Aug;46(2):343–346. doi: 10.1104/pp.46.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyer J. S. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 1970 Aug;46(2):233–235. doi: 10.1104/pp.46.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jordan W. R., Morgan P. W., Davenport T. L. Water Stress Enhances Ethylene-mediated Leaf Abscission in Cotton. Plant Physiol. 1972 Dec;50(6):756–758. doi: 10.1104/pp.50.6.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Thimann K. V., Satler S. O. Relation between leaf senescence and stomatal closure: Senescence in light. Proc Natl Acad Sci U S A. 1979 May;76(5):2295–2298. doi: 10.1073/pnas.76.5.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES