Abstract
To evaluate leaf carbon balance during rapid pod-fill in soybean (Glycine max [L.] Merrill), measurements were made of CO2 assimilation at mid-day and changes in specific leaf weight, starch, and sucrose concentrations over a 9-hour interval. Assimilate export was estimated from CO2 assimilation and leaf dry matter accumulation. Chamber-grown `Amsoy 71' and `Wells' plants were subjected on the day of the measurements to one of six photosynthetic photon flux densities in order to vary CO2 assimilation rates.
Rate of accumulation of leaf dry matter and rate of export both increased as CO2 assimilation rate increased in each cultivar.
Starch concentrations were greater in Amsoy 71 than in Wells at all CO2 assimilation rates. At low CO2 assimilation rates, export rates in Amsoy 71 were maintained in excess of 1.0 milligram CH2O per square decimeter leaf area per hour at the expense of leaf reserves. In Wells, however, export rate continued to decline with decreasing CO2 assimilation rate. The low leaf starch concentration in Wells at low CO2 assimilation rates may have limited export by limiting carbon from starch remobilization.
Both cultivars exhibited positive correlations between CO2 assimilation rate and sucrose concentration, and between sucrose concentration and export rate. Carbon fixation and carbon partitioning both influenced export rate via effects on sucrose concentration.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chang C. W. Starch depletion and sugars in developing cotton leaves. Plant Physiol. 1980 May;65(5):844–847. doi: 10.1104/pp.65.5.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatterton N. J., Silvius J. E. Photosynthate Partitioning into Starch in Soybean Leaves: I. Effects of Photoperiod versus Photosynthetic Period Duration. Plant Physiol. 1979 Nov;64(5):749–753. doi: 10.1104/pp.64.5.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher D. B. Kinetics of C-14 Translocation in Soybean: II. Kinetics in the Leaf. Plant Physiol. 1970 Feb;45(2):114–118. doi: 10.1104/pp.45.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nafziger E. D., Koller H. R. Influence of Leaf Starch Concentration on CO(2) Assimilation in Soybean. Plant Physiol. 1976 Apr;57(4):560–563. doi: 10.1104/pp.57.4.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Outlaw W. H., Fisher D. B., Christy A. L. Compartmentation in Vicia faba Leaves: II. Kinetics of C-Sucrose Redistribution among Individual Tissues following Pulse Labeling. Plant Physiol. 1975 Apr;55(4):704–711. doi: 10.1104/pp.55.4.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Servaites J. C., Geiger D. R. Effects of light intensity and oxygen on photosynthesis and translocation in sugar beet. Plant Physiol. 1974 Oct;54(4):575–578. doi: 10.1104/pp.54.4.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silvius J. E., Chatterton N. J., Kremer D. F. Photosynthate partitioning in soybean leaves at two irradiance levels: comparative responses of acclimated and unacclimated leaves. Plant Physiol. 1979 Nov;64(5):872–875. doi: 10.1104/pp.64.5.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silvius J. E., Kremer D. F., Lee D. R. Carbon assimilation and translocation in soybean leaves at different stages of development. Plant Physiol. 1978 Jul;62(1):54–58. doi: 10.1104/pp.62.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorne J. H., Koller H. R. Influence of assimilate demand on photosynthesis, diffusive resistances, translocation, and carbohydrate levels of soybean leaves. Plant Physiol. 1974 Aug;54(2):201–207. doi: 10.1104/pp.54.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Upmeyer D. J., Koller H. R. Diurnal trends in net photosynthetic rate and carbohydrate levels of soybean leaves. Plant Physiol. 1973 May;51(5):871–874. doi: 10.1104/pp.51.5.871. [DOI] [PMC free article] [PubMed] [Google Scholar]