Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 Oct;73(2):517–520. doi: 10.1104/pp.73.2.517

13C Nuclear Magnetic Resonance Studies of Crassulacean Acid Metabolism in Intact Leaves of Kalanchoë tubiflora1

Mark A Stidham 1,2,3, Donald E Moreland 1,2,3, James N Siedow 1,2,3
PMCID: PMC1066495  PMID: 16663250

Abstract

13C nuclear magnetic resonance spectroscopy of intact leaves of Kalanchoë tubiflora was used to observe Crassulacean acid metabolism in vivo. 13C signals from C-4 of malate were observed after overnight exposure of leaves to 13CO2. Illumination of the labeled leaves resulted in a gradual decrease in the malate signals. After a period of darkness in normal air, 13C signals were detected in all four carbons of malate in the previously labeled leaves. The 13C nuclear magnetic resonance spectrum of malate in solution was pH dependent, which allowed an estimation of the vacuolar pH from the whole leaf spectrum. The pH was 4.0 following a 14-hour dark period, but rose to greater than 6.0 after 6 hours of illumination.

Full text

PDF
517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cockburn W., McAulay A. The pathway of carbon dioxide fixation in crassulacean plants. Plant Physiol. 1975 Jan;55(1):87–89. doi: 10.1104/pp.55.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Holtum J. A., O'leary M. H., Osmond C. B. Effect of Varying CO(2) Partial Pressure on Photosynthesis and on Carbon Isotope Composition of Carbon-4 of Malate from the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana Hamet et Perr. Plant Physiol. 1983 Mar;71(3):602–609. doi: 10.1104/pp.71.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Martin J. B., Bligny R., Rebeille F., Douce R., Leguay J. J., Mathieu Y., Guern J. A P Nuclear Magnetic Resonance Study of Intracellular pH of Plant Cells Cultivated in Liquid Medium. Plant Physiol. 1982 Oct;70(4):1156–1161. doi: 10.1104/pp.70.4.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
  5. Roberts J. K., Jardetzky O. Monitoring of cellular metabolism by NMR. Biochim Biophys Acta. 1981 Nov 9;639(1):53–76. doi: 10.1016/0304-4173(81)90005-7. [DOI] [PubMed] [Google Scholar]
  6. Schaefer J., Stejskal E. O., Beard C. F. Carbon-13 Nuclear Magnetic Resonance Analysis of Metabolism in Soybean Labeled by CO(2). Plant Physiol. 1975 Jun;55(6):1048–1053. doi: 10.1104/pp.55.6.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schaefer J., Stejskal E. O., McKay R. A. Cross-polarization NMR of N-15 labeled soybeans. Biochem Biophys Res Commun. 1979 May 14;88(1):274–280. doi: 10.1016/0006-291x(79)91726-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES