Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 Nov;73(3):619–623. doi: 10.1104/pp.73.3.619

Reduction of N-Acetyl Methionine Sulfoxide in Plants 1

Juan Sánchez 1,2, Basil J Nikolau 1, Paul K Stumpf 1
PMCID: PMC1066517  PMID: 16663269

Abstract

An enzymic activity which catalyzes the reduction of N-acetyl-methionine sulfoxide to l-N-acetyl-methionine has been observed in a wide variety of plant tissues. Its activity depended on the presence of dithiotreithol in the incubation medium. l-Methionine-sulfoxide was essentially inactive as a substrate. Of all the physiological reductants tested, only thioredoxin partially replaced dithiothreithol. When fractions obtained by gradient centrifugation of gently disrupted barley protoplasts were assayed for the reductase, the activity was largely associated with chloroplasts although approximately 15% was found in the cytosolic compartment. The enzyme, isolated from spinach chloroplasts, had a broad pH optima between 7.0 and 8.0, and its Km for N-acetyl methionine sulfoxide is 0.4 millimolar. The possible participation of this ubiquitous enzyme in enzyme regulation is discussed.

Full text

PDF
619

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRUINSMA J. A comment on the spectrophotometric determination of chlorophyll. Biochim Biophys Acta. 1961 Sep 30;52:576–578. doi: 10.1016/0006-3002(61)90418-8. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Brot N., Weissbach H. Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch Biochem Biophys. 1983 May;223(1):271–281. doi: 10.1016/0003-9861(83)90592-1. [DOI] [PubMed] [Google Scholar]
  4. Brot N., Weissbach L., Werth J., Weissbach H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2155–2158. doi: 10.1073/pnas.78.4.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brot N., Werth J., Koster D., Weissbach H. Reduction of N-acetyl methionine sulfoxide: a simple assay for peptide methionine sulfoxide reductase. Anal Biochem. 1982 May 15;122(2):291–294. doi: 10.1016/0003-2697(82)90283-4. [DOI] [PubMed] [Google Scholar]
  6. Doney R. C., Thompson J. F. The reduction of S-methyl-L-cysteine sulfoxide and L-methionine sulfoxide in turnip and bean leaves. Biochim Biophys Acta. 1966 Jul 27;124(1):39–49. doi: 10.1016/0304-4165(66)90311-4. [DOI] [PubMed] [Google Scholar]
  7. McKeon T. A., Stumpf P. K. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem. 1982 Oct 25;257(20):12141–12147. [PubMed] [Google Scholar]
  8. Wolosiuk R. A., Crawford N. A., Yee B. C., Buchanan B. B. Isolation of three thioredoxins from spinach leaves. J Biol Chem. 1979 Mar 10;254(5):1627–1632. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES