Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Jan;74(1):128–133. doi: 10.1104/pp.74.1.128

Role of Nitrogen Assimilation in Seed Development of Soybean

Daniel R Nelson 1, Robert J Bellville 1, Clark A Porter 1
PMCID: PMC1066638  PMID: 16663366

Abstract

A nondestructive acetylene reduction assay for nitrogenase activity of soybean (Glycine max L. Merr) field plots is presented. Plots consisted of 120 × 150 × 30 centimeter boxes containing 65 plants. The plants were grown in a medium grade sand under controlled nutrient, moisture, and root temperature conditions. Acetylene at a concentration of 10 milliliters per liter was circulated through manifolds in the chambers; equilibration required 5 minutes, and activity was linear with time. Optimum growth and assay environments resulted in activity of 70 micromoles ethylene per plant per hour. Plant development and yield were comparable to soil-grown companion plots.

The well accepted hypothesis that developing seeds deprive the nodules of carbohydrate was not substantiated. The nondestructive acetylene reduction profile did not decline until 30 days after the onset of seed development (R-5). This result was consistent with reports from the literature which indicated that 60% of seasonal nitrogen was fixed after R-5. Further, a high correlation shown between integrated seasonal acetylene reduction and yield (r = 0.999) suggested a cooperative relationship between the roots and shoot. A reduction in source:sink ratio (60% defoliation) after R-5 had no effect on acetylene reduction. This showed that neither an increase in sink demand by the pods nor a carbon shortage during podfill decreased dinitrogen fixation. A conceptual model relating seed growth with carbon and nitrogen assimilation is proposed.

Full text

PDF
128

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bethlenfalvay G. J., Phillips D. A. Ontogenetic Interactions between Photosynthesis and Symbiotic Nitrogen Fixation in Legumes. Plant Physiol. 1977 Sep;60(3):419–421. doi: 10.1104/pp.60.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hoagland D. R., Broyer T. C. GENERAL NATURE OF THE PROCESS OF SALT ACCUMULATION BY ROOTS WITH DESCRIPTION OF EXPERIMENTAL METHODS. Plant Physiol. 1936 Jul;11(3):471–507. doi: 10.1104/pp.11.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Williams L. E., Phillips D. A. Effect of irradiance on development of apparent nitrogen fixation and photosynthesis in soybean. Plant Physiol. 1980 Nov;66(5):968–972. doi: 10.1104/pp.66.5.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Wilson R. F., Burton J. W., Buck J. A., Brim C. A. Studies on Genetic Male-Sterile Soybeans: I. Distribution of Plant Carbohydrate and Nitrogen during Development. Plant Physiol. 1978 May;61(5):838–841. doi: 10.1104/pp.61.5.838. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES