Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Jan;74(1):134–138. doi: 10.1104/pp.74.1.134

In Vitro Fatty Acid Synthesis and Complex Lipid Metabolism in the Cyanobacterium Anabaena variabilis1

I. Some Characteristics of Fatty Acid Synthesis

Nora W Lem 1,2, Paul K Stumpf 1
PMCID: PMC1066639  PMID: 16663367

Abstract

In vitro fatty acid synthesis was examined in crude cell extracts, soluble fractions, and 80% (NH4)2SO4 fractions from Anabaena variabilis M3. Fatty acid synthesis was absolutely dependent upon acyl carrier protein and required NADPH and NADH. Moreover, fatty acid synthesis and elongation occurred in the cytoplasm of the cell. The major fatty acid products were palmitic acid (16:0) and stearic acid (18:0). Of considerable interest, both stearoyl-acyl carrier protein and stearoyl-coenzyme A desaturases were not detected in any of the fractions from A. variabilis. The similarities and differences in fatty acid synthesis between A. variabilis and higher plant tissues are discussed with respect to the endosymbiotic theory of chloroplast evolution.

Full text

PDF
134

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. B., Arnon D. I. Studies on Nitrogen-Fixing Blue-Green Algae. I. Growth and Nitrogen Fixation by Anabaena Cylindrica Lemm. Plant Physiol. 1955 Jul;30(4):366–372. doi: 10.1104/pp.30.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Jaworski J. G., Goldschmidt E. E., Stumpf P. K. Fat metabolism in higher plants. Properties of the palmityl acyl carrier protein: stearyl acyl carrier protein elongation system in maturing safflower seed extracts. Arch Biochem Biophys. 1974 Aug;163(2):769–776. doi: 10.1016/0003-9861(74)90539-6. [DOI] [PubMed] [Google Scholar]
  4. Jaworski J. G., Stumpf P. K. Fat metabolism in higher plants. Properties of a soluble stearyl-acyl carrier protein desaturase from maturing Carthamus tinctorius. Arch Biochem Biophys. 1974 May;162(1):158–165. doi: 10.1016/0003-9861(74)90114-3. [DOI] [PubMed] [Google Scholar]
  5. Joyard J., Stumpf P. K. Synthesis of Long-Chain Acyl-CoA in Chloroplast Envelope Membranes. Plant Physiol. 1981 Feb;67(2):250–256. doi: 10.1104/pp.67.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lem N. W., Williams J. P. Changes in the 14C-labelling of molecular species of 3-monogalactosyl-1,2-diacylglycerol in leaves of Vicia faba treated with compound San 9785. Biochem J. 1983 Feb 1;209(2):513–518. doi: 10.1042/bj2090513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McKeon T. A., Stumpf P. K. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem. 1982 Oct 25;257(20):12141–12147. [PubMed] [Google Scholar]
  8. Nichols B. W., Harris R. V., James A. T. The lipid metabolism of blue-green algae. Biochem Biophys Res Commun. 1965 Jul 26;20(3):256–262. doi: 10.1016/0006-291x(65)90356-6. [DOI] [PubMed] [Google Scholar]
  9. Packter N. M., Stumpf P. K. Fat metabolism in higher plants. The effect of cerulenin on the synthesis of medium- and long-chain acids in leaf tissue. Arch Biochem Biophys. 1975 Apr;167(2):655–667. doi: 10.1016/0003-9861(75)90509-3. [DOI] [PubMed] [Google Scholar]
  10. Pieringer R. A. The metabolism of glyceride glycolipids. I. Biosynthesis of monoglucosyl diglyceride and diglucosyl diglyceride by glucosyltransferase pathways in Streptococcus faecalis. J Biol Chem. 1968 Sep 25;243(18):4894–4903. [PubMed] [Google Scholar]
  11. Rock C. O., Garwin J. L. Preparative enzymatic synthesis and hydrophobic chromatography of acyl-acyl carrier protein. J Biol Chem. 1979 Aug 10;254(15):7123–7128. [PubMed] [Google Scholar]
  12. Sato N., Murata N. Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in thermo-adaptation. Biochim Biophys Acta. 1980 Aug 11;619(2):353–366. doi: 10.1016/0005-2760(80)90083-1. [DOI] [PubMed] [Google Scholar]
  13. Shimakata T., Stumpf P. K. Isolation and function of spinach leaf beta-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5808–5812. doi: 10.1073/pnas.79.19.5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shimakata T., Stumpf P. K. Purification and characterization of beta-ketoacyl-ACP synthetase I from Spinacia oleracea leaves. Arch Biochem Biophys. 1983 Jan;220(1):39–45. doi: 10.1016/0003-9861(83)90384-3. [DOI] [PubMed] [Google Scholar]
  15. Shimakata T., Stumpf P. K. The procaryotic nature of the fatty acid synthetase of developing Carthamus tinctorius L. (Safflower) seeds. Arch Biochem Biophys. 1982 Aug;217(1):144–154. doi: 10.1016/0003-9861(82)90488-x. [DOI] [PubMed] [Google Scholar]
  16. WINTERMANS J. F. Concentrations of phosphatides and glycolipids in leaves and chloroplasts. Biochim Biophys Acta. 1960 Oct 21;44:49–54. doi: 10.1016/0006-3002(60)91521-3. [DOI] [PubMed] [Google Scholar]
  17. Williams J. P. Galactolipid synthesis in Vicia faba leaves. V. Redistribution of 14C-labelling in the polar moieties and the 14C-labelling kinetics of the fatty acids of the molecular species of mono- and digalactosyl diacylglycerols. Biochim Biophys Acta. 1980 Jun 23;618(3):461–472. doi: 10.1016/0005-2760(80)90264-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES