Abstract
During growth on l-cysteine ethylester, Chlorella fusca (211-8b) accumulated a substance which contained bound sulfide, which could be liberated by reduction with dithioerythritol (DTE) as inorganic sulfide. This substance was extracted with hot methanol and purified by thin layer chromatography. This substance liberated free sulfide when incubated with mono- and dithiols, and thiocyanate was formed after heating with KCN. The isolated substance cochromatographed with authentic sulfur flower using different solvent systems for thin layer chromatography, high pressure liquid chromatography, and the identical spectrum with a relative λmax at 263 nm was found. The chemical structure was confirmed by mass spectrometry showing a molecular weight of 256 m/e for the S8 configuration. No labeled elemental sulfur was detected when the cells were grown on [35S]sulfate and l-cysteine ethylester indicating the origin of elemental sulfur from l-cysteine ethylester. C. fusca seems to have enzymes for the metabolism of elemental sulfur, since it disappeared after prolonged growth into the stationary phase. Cysteine was formed from O-acetyl-l-serine and elemental sulfur in the presence of thiol groups and purified cysteine synthase from spinach or Chlorella.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIRT L. M., HIRD F. J. Kinetic aspects of the uptake of amino acids by carrot tissue. Biochem J. 1958 Oct;70(2):286–292. doi: 10.1042/bj0700286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fletcher J. C., Robson A. The occurrence of bis-(2-amino-2-carboxyethyl) trisulphide in hydrolysates of wool and other proteins. Biochem J. 1963 Jun;87(3):553–559. doi: 10.1042/bj0870553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaitonde M. K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967 Aug;104(2):627–633. doi: 10.1042/bj1040627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garlick S., Oren A., Padan E. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol. 1977 Feb;129(2):623–629. doi: 10.1128/jb.129.2.623-629.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HATCH M. D., TURNER J. F. A protein disulphide reductase from pea seeds. Biochem J. 1960 Sep;76:556–562. doi: 10.1042/bj0760556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HYLIN J. W., WOOD J. L. Enzymatic formation of polysulfides from mercaptopyruvate. J Biol Chem. 1959 Aug;234(8):2141–2144. [PubMed] [Google Scholar]
- Hageage G. J., Jr, Eanes E. D., Gherna R. L. X-ray diffraction studies of the sulfur globules accumulated by Chromatium species. J Bacteriol. 1970 Feb;101(2):464–469. doi: 10.1128/jb.101.2.464-469.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen T. A., van Gemerden H. Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol. 1972;86(1):49–56. doi: 10.1007/BF00412399. [DOI] [PubMed] [Google Scholar]
- Harrington H. M., Smith I. K. Cysteine transport into cultured tobacco cells. Plant Physiol. 1977 Dec;60(6):807–811. doi: 10.1104/pp.60.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolson G. L., Schmidt G. L. Structure of the Chromatium sulfur particle and its protein membrane. J Bacteriol. 1971 Mar;105(3):1142–1148. doi: 10.1128/jb.105.3.1142-1148.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pezet R., Pont V. Elemental sulfur: accumulation in different species of fungi. Science. 1977 Apr 22;196(4288):428–429. doi: 10.1126/science.850786. [DOI] [PubMed] [Google Scholar]
- Pohl P., Glasl H., Wagner H. Zur Analytik pflanzlicher Glyko- und Phospholipoide und ihrer Fettsäuren. I. Eine neue dünnschichtchromatographische Methode zur Trennung pflanzlicher Lipoide und quantitativen Bestimmung ihrer Fettsäure-Zusammensetzung. J Chromatogr. 1970 Jun 24;49(3):488–492. doi: 10.1016/s0021-9673(00)93664-1. [DOI] [PubMed] [Google Scholar]
- ROMANO A. H., NICKERSON W. J. Cystine reductase of pea seeds and yeasts. J Biol Chem. 1954 May;208(1):409–416. [PubMed] [Google Scholar]
- SIEGEL L. M. A DIRECT MICRODETERMINATION FOR SULFIDE. Anal Biochem. 1965 Apr;11:126–132. doi: 10.1016/0003-2697(65)90051-5. [DOI] [PubMed] [Google Scholar]
- SORBO B. A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta. 1957 Feb;23(2):412–416. doi: 10.1016/0006-3002(57)90346-3. [DOI] [PubMed] [Google Scholar]
- Truper H. G., Hathaway J. C. Orthorhombic sulphur formed by photosynthetic sulphur bacteria. Nature. 1967 Jul 22;215(5099):435–436. doi: 10.1038/215435a0. [DOI] [PubMed] [Google Scholar]
- Ubuka T., Akagi R., Kiguchi S., Taniguchi M., Mikami H. Biosynthesis of S-(2-hydroxy-2-carboxyethylthio)-L-cysteine (3-mercaptolactate-cysteine disulfide) by the rat heart. Biochem Int. 1983 Feb;6(2):291–296. [PubMed] [Google Scholar]
- Vachek H., Wood J. L. Purification and properties of mercaptopyruvate sulfur transferase of Escherichia coli. Biochim Biophys Acta. 1972 Jan 20;258(1):133–146. doi: 10.1016/0005-2744(72)90973-4. [DOI] [PubMed] [Google Scholar]
