Abstract
The salt-extractable hydroxyproline-rich cell wall glycoprotein from carrot (Daucus carota L.) roots is composed of 35% (w/w) protein, 3% (w/w) galactose, and 62% (w/w) arabinose. The arabinose is attached to hydroxyproline as tetra- and trisaccharides. The circular dichroism of the glycoprotein shows that it is completely in the polyproline II conformation. After deglycosylation of the glycoprotein, the polyproline II conformation of the peptide backbone was lost. This indicates that the carbohydrate reinforces the polyproline II conformation.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubert J. P., Loucheux-Lefebvre M. H. Conformational study of alpha1-acid glycoprotein. Arch Biochem Biophys. 1976 Aug;175(2):400–409. doi: 10.1016/0003-9861(76)90527-0. [DOI] [PubMed] [Google Scholar]
- Aubert J. P., Porchet N., Boersma A., Loucheux-Lefebvre M. H., Degand P. Circular dichroism studies on the proline-rich glycoprotein of human parotid saliva. Biochim Biophys Acta. 1982 Jun 4;704(2):361–365. doi: 10.1016/0167-4838(82)90166-2. [DOI] [PubMed] [Google Scholar]
- Brysk M. M., Chrispeels M. J. Isolation and partial characterization of a hydroxyproline-rich cell wall glycoprotein and its cytoplasmic precursor. Biochim Biophys Acta. 1972 Feb 29;257(2):421–432. doi: 10.1016/0005-2795(72)90295-4. [DOI] [PubMed] [Google Scholar]
- Cooper J. B., Varner J. E. Insolubilization of hydroxyproline-rich cell wall glycoprotein in aerated carrot root slices. Biochem Biophys Res Commun. 1983 Apr 15;112(1):161–167. doi: 10.1016/0006-291x(83)91811-9. [DOI] [PubMed] [Google Scholar]
- Deber C. M., Bovey F. A., Carver J. P., Blout E. R. Nuclear magnetic resonance evidence for cis-peptide bonds in proline oligomers. J Am Chem Soc. 1970 Oct 21;92(21):6191–6198. doi: 10.1021/ja00724a016. [DOI] [PubMed] [Google Scholar]
- Drózdz M., Kucharz E., Szyja J. A colorimetric micromethod for determination of hydroxyproline in blood serum. Z Med Labortech. 1976 Aug 4;17(4):163–171. [PubMed] [Google Scholar]
- Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
- Fasman G. D., Hoving H., Timasheff S. N. Circular dichroism of polypeptide and protein conformations. Film studies. Biochemistry. 1970 Aug 18;9(17):3316–3324. doi: 10.1021/bi00819a005. [DOI] [PubMed] [Google Scholar]
- Fry S. C. Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J. 1982 May 15;204(2):449–455. doi: 10.1042/bj2040449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E. Procedure for freeze-drying molecules adsorbed to mica flakes. J Mol Biol. 1983 Sep 5;169(1):155–195. doi: 10.1016/s0022-2836(83)80179-x. [DOI] [PubMed] [Google Scholar]
- Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol. 1980 Mar;84(3):560–583. doi: 10.1083/jcb.84.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klis F. M. Glycosylated seryl residues in wall protein of elongating pea stems. Plant Physiol. 1976 Feb;57(2):224–226. doi: 10.1104/pp.57.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lamport D. T., Katona L., Roerig S. Galactosylserine in extensin. Biochem J. 1973 May;133(1):125–132. doi: 10.1042/bj1330125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leach J. E., Cantrell M. A., Sequeira L. Hydroxyproline-rich bacterial agglutinin from potato : extraction, purification, and characterization. Plant Physiol. 1982 Nov;70(5):1353–1358. doi: 10.1104/pp.70.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattice W. L., Mandelkern L. Development of ordered structures in sequential copolypeptides containing L-proline and -hydroxy-L-proline. Biochemistry. 1971 May 11;10(10):1926–1933. doi: 10.1021/bi00786a029. [DOI] [PubMed] [Google Scholar]
- Mellon J. E., Helgeson J. P. Interaction of a hydroxyproline-rich glycoprotein from tobacco callus with potential pathogens. Plant Physiol. 1982 Aug;70(2):401–405. doi: 10.1104/pp.70.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
- Stuart D. A., Varner J. E. Purification and Characterization of a Salt-extractable Hydroxyproline-rich Glycoprotein from Aerated Carrot Discs. Plant Physiol. 1980 Nov;66(5):787–792. doi: 10.1104/pp.66.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka M., Sato K., Uchida T. Plant prolyl hydroxylase recognizes poly(L-proline) II helix. J Biol Chem. 1981 Nov 25;256(22):11397–11400. [PubMed] [Google Scholar]
- Tuzimura K., Konno T., Meguro H., Hatano M., Murakami T. A critical study of the measurement and calibration of circular dichroism. Anal Biochem. 1977 Jul;81(1):167–174. doi: 10.1016/0003-2697(77)90610-8. [DOI] [PubMed] [Google Scholar]

