Abstract
Soybeans (Glycine max [L.] Merr. cv Essex) were grown in a green-house, and the first trifoliate leaf was either allowed to expand under a high photosynthetic photon flux density (PPFD) (1.4 millimoles per square meter per second) or a low PPFD (0.8 millimoles per square meter per second). After full leaf expansion, plants from each treatment were placed into a factorial design experiment with two levels of ultraviolet-B (UV-B) radiation (0 and 80 milliwatts per square meter biologically effective UV-B) and two levels of concomitant PPFD (0.8 and 1.4 millimoles per square meter per second) resulting in a total of eight treatments. Measurements of net photosynthesis and the associated diffusion conductances, ribulose-1,5-bisphosphate carboxylase activity, chlorophyll and flavonoid concentrations, and leaf anatomy were examined for all treatments. Leaves expanded in the high PPFD were unaffected by UV-B radiation while those expanded in the low PPFD were sensitive to UV-B-induced damage. Likewise, plants which were UV-B irradiated concomitantly with the high PPFD were resistant to UV-B damage, while plants irradiated under the low PPFD were sensitive. The results of this study indicate that both anatomical/morphological and physiological/biochemical factors contribute toward plant sensitivity to UV-B radiation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandle J. R., Campbell W. F., Sisson W. B., Caldwell M. M. Net Photosynthesis, Electron Transport Capacity, and Ultrastructure of Pisum sativum L. Exposed to Ultraviolet-B Radiation. Plant Physiol. 1977 Jul;60(1):165–169. doi: 10.1104/pp.60.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunce J. A., Patterson D. T., Peet M. M. Light acclimation during and after leaf expansion in soybean. Plant Physiol. 1977 Aug;60(2):255–258. doi: 10.1104/pp.60.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow R. B. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3363–3366. doi: 10.1073/pnas.71.9.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sisson W. B., Caldwell M. M. Photosynthesis, Dark Respiration, and Growth of Rumex patientia L. Exposed to Ultraviolet Irradiance (288 to 315 Nanometers) Simulating a Reduced Atmospheric Ozone Column. Plant Physiol. 1976 Oct;58(4):563–568. doi: 10.1104/pp.58.4.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teramura A. H. Effects of Ultraviolet-B Irradiances on Soybean: II. INTERACTION BETWEEN ULTRAVIOLET-B AND PHOTOSYNTHETICALLY ACTIVE RADIATION ON NET PHOTOSYNTHESIS, DARK RESPIRATION, AND TRANSPIRATION. Plant Physiol. 1980 Mar;65(3):483–488. doi: 10.1104/pp.65.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wellmann E. UV dose-dependent induction of enzymes related to flavonoid biosynthesis in cell suspension cultures of parsley. FEBS Lett. 1975 Mar 1;51(1):105–107. doi: 10.1016/0014-5793(75)80863-5. [DOI] [PubMed] [Google Scholar]