Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Apr;74(4):822–826. doi: 10.1104/pp.74.4.822

Amino Acid Metabolism in Pea Leaves 1

Utilization of Nitrogen from Amide and Amino Groups of [15N]Asparagine

Trung Chanh Ta 1, Kenneth W Joy 1, Robert J Ireland 1
PMCID: PMC1066775  PMID: 16663517

Abstract

The flow of nitrogen from the amino and amide groups of asparagine has been followed in young pea (Pisum sativum CV Little Marvel) leaves, supplied through the xylem with 15N-labeled asparagine. The results confirm that there are two main routes for asparagine metabolism: deamidation and transamination.

Nitrogen from the amide group is found predominantly in 2-hydroxy-succinamic acid (derived from transamination of asparagine) and in the amide group of glutamine. The amide nitrogen is also found in glutamate and dispersed through a range of amino acids. Transfer to glutamineamide results from assimilation of ammonia produced by deamidation of both asparagine and its transamination products: this assimilation is blocked by methionine sulfoximine. The release of amide nitrogen as ammonia is greatly reduced by aminooxyacetate, suggesting that, for much of the metabolized asparagine, transamination precedes deamidation.

The amino group of asparagine is widely distributed in amino acids, especially aspartate, glutamate, alanine, and homoserine. For homoserine, a comparison of N and C labeling, and use of a transaminase inhibitor, suggests that it is not produced from the main pool of aspartate, and transamination may play a role in the accumulation of homoserine in peas.

Full text

PDF
822

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins C. A., Pate J. S., Peoples M. B., Joy K. W. Amino Acid transport and metabolism in relation to the nitrogen economy of a legume leaf. Plant Physiol. 1983 Apr;71(4):841–848. doi: 10.1104/pp.71.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkins C. A., Pate J. S., Sharkey P. J. Asparagine metabolism-key to the nitrogen nutrition of developing legume seeds. Plant Physiol. 1975 Dec;56(6):807–812. doi: 10.1104/pp.56.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauer A., Joy K. W., Urquhart A. A. Amino Acid metabolism of pea leaves: labeling studies on utilization of amides. Plant Physiol. 1977 May;59(5):920–924. doi: 10.1104/pp.59.5.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bauer A., Urquhart A. A., Joy K. W. Amino Acid metabolism of pea leaves: diurnal changes and amino Acid synthesis from N-nitrate. Plant Physiol. 1977 May;59(5):915–919. doi: 10.1104/pp.59.5.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fentem P. A., Lea P. J., Stewart G. R. Ammonia Assimilation in the Roots of Nitrate- and Ammonia-Grown Hordeum Vulgare (cv Golden Promise). Plant Physiol. 1983 Mar;71(3):496–501. doi: 10.1104/pp.71.3.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ireland R. J., Joy K. W. Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. Arch Biochem Biophys. 1983 May;223(1):291–296. doi: 10.1016/0003-9861(83)90594-5. [DOI] [PubMed] [Google Scholar]
  7. Ireland R. J., Joy K. W. Subcellular Localization of Asparaginase and Asparagine Aminotransferase in Pisum sativum Leaves. Plant Physiol. 1983 Aug;72(4):1127–1129. doi: 10.1104/pp.72.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Joy K. W., Ireland R. J., Lea P. J. Asparagine synthesis in pea leaves, and the occurrence of an asparagine synthetase inhibitor. Plant Physiol. 1983 Sep;73(1):165–168. doi: 10.1104/pp.73.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kano H., Yoneyama T., Kumazawa K. Emission spectrometric 15-N analysis of the amino acids and amides in plant tissues separated by thin layer chromatography. Anal Biochem. 1975 Jul;67(1):327–331. doi: 10.1016/0003-2697(75)90300-0. [DOI] [PubMed] [Google Scholar]
  10. Lloyd N. D., Joy K. W. 2-Hydroxysuccinamic acid: a product of asparagine metabolis in plants. Biochem Biophys Res Commun. 1978 Mar 15;81(1):186–192. doi: 10.1016/0006-291x(78)91647-9. [DOI] [PubMed] [Google Scholar]
  11. Sodek L. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants. Plant Physiol. 1980 Jan;65(1):22–26. doi: 10.1104/pp.65.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Streeter J. G. Asparaginase and asparagine transaminase in soybean leaves and root nodules. Plant Physiol. 1977 Aug;60(2):235–239. doi: 10.1104/pp.60.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Urquhart A. A., Joy K. W. Transport, metabolism, and redistribution of xylem-borne amino acids in developing pea shoots. Plant Physiol. 1982 May;69(5):1226–1232. doi: 10.1104/pp.69.5.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES