Abstract
Recent evidence from leaves and stems indicates that gradients in water potential (ψw) necessary for water movement through growing tissues are larger than previously assumed. Because growth is sensitive to tissue ψw and the behavior of these gradients has not been investigated in transpiring plants, we examined the water status of all the growing and mature vegetative tissues of maize (Zea mays L.) during high and low rates of transpiration. The ψw measured in the mature regions of the plant responded primarily to transpiration, while the ψw in the growing regions was affected both by transpiration and growth. The transpiration-induced potentials of the mature tissue formed a gradient of decreasing ψw along the transpiration stream while the growth-induced potentials formed a gradient of decreasing ψw from the transpiration stream to the expanding cells in the growing tissue. The growth-induced gradient in ψw within the leaf remained fairly constant as the xylem ψw decreased during the day and was associated with a decreased osmotic potential (ψs) of the growing region (osmotic adjustment). The growth-induced gradient in ψw was not caused by excision of the tissue because intact maize stems exhibited a similar ψw. These observations support the concept that large gradients in ψw are required to maintain water flow to expanding cells within all the vegetative tissues and suggest that the maintenance of a favorable gradient in ψw for cell enlargement may be an important role for osmotic adjustment.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acevedo E., Fereres E., Hsiao T. C., Henderson D. W. Diurnal growth trends, water potential, and osmotic adjustment of maize and sorghum leaves in the field. Plant Physiol. 1979 Sep;64(3):476–480. doi: 10.1104/pp.64.3.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Acevedo E., Hsiao T. C., Henderson D. W. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 1971 Nov;48(5):631–636. doi: 10.1104/pp.48.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blizzard W. E. Comparative resistance of the soil and the plant to water transport. Plant Physiol. 1980 Nov;66(5):809–814. doi: 10.1104/pp.66.5.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer J. S. Leaf water potentials measured with a pressure chamber. Plant Physiol. 1967 Jan;42(1):133–137. doi: 10.1104/pp.42.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer J. S. Regulation of water movement in whole plants. Symp Soc Exp Biol. 1977;31:455–470. [PubMed] [Google Scholar]
- Boyer J. S. Relationship of water potential to growth of leaves. Plant Physiol. 1968 Jul;43(7):1056–1062. doi: 10.1104/pp.43.7.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavalieri A. J., Boyer J. S. Water potentials induced by growth in soybean hypocotyls. Plant Physiol. 1982 Feb;69(2):492–496. doi: 10.1104/pp.69.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cosgrove D. J., Cleland R. E. Osmotic properties of pea internodes in relation to growth and auxin action. Plant Physiol. 1983 Jun;72(2):332–338. doi: 10.1104/pp.72.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutler J. M., Steponkus P. L., Wach M. J., Shahan K. W. Dynamic aspects and enhancement of leaf elongation in rice. Plant Physiol. 1980 Jul;66(1):147–152. doi: 10.1104/pp.66.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiscus E. L., Klute A., Kaufmann M. R. An interpretation of some whole plant water transport phenomena. Plant Physiol. 1983 Apr;71(4):810–817. doi: 10.1104/pp.71.4.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michelena V. A., Boyer J. S. Complete turgor maintenance at low water potentials in the elongating region of maize leaves. Plant Physiol. 1982 May;69(5):1145–1149. doi: 10.1104/pp.69.5.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molz F. J. Growth-induced Water Potentials in Plant Cells and Tissues. Plant Physiol. 1978 Sep;62(3):423–429. doi: 10.1104/pp.62.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radin J. W., Boyer J. S. Control of Leaf Expansion by Nitrogen Nutrition in Sunflower Plants : ROLE OF HYDRAULIC CONDUCTIVITY AND TURGOR. Plant Physiol. 1982 Apr;69(4):771–775. doi: 10.1104/pp.69.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]