Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Apr;74(4):962–966. doi: 10.1104/pp.74.4.962

Characteristics of Light-Dependent Inorganic Carbon Uptake by Isolated Spinach Chloroplasts

Richard C Sicher 1,2
PMCID: PMC1066801  PMID: 16663542

Abstract

The light-dependent accumulation of radioactively labeled inorganic carbon in isolated spinach (Spinacia oleracea L.) chloroplasts was determined by silicone oil filtering centrifugation. Intact chloroplasts, dark-incubated 60 seconds at pH 7.6 and 23°C with 0.5 millimolar sodium bicarbonate, contained 0.5 to 1.0 millimolar internal inorganic carbon. The stromal pool of inorganic carbon increased 5- to 7-fold after 2 to 3 minutes of light. The saturated internal bicarbonate concentration of illuminated spinach chloroplasts was 10- to 20-fold greater than that of the external medium. This ratio decreased at lower temperatures and with increasing external bicarbonate. Over one-half the inorganic carbon found in intact spinach chloroplasts after 2 minutes of light was retained during a subsequent 3-minute dark incubation at 5°C. Calculations of light-induced stromal alkalization based on the uptake of radioactively labeled bicarbonate were 0.4 to 0.5 pH units less than measurements performed with [14C]dimethyloxazolidine-dione. About one-third of the binding sites on the enzyme ribulose 1,5-bisphosphate carboxylase were radiolabeled when the enzyme was activated in situ and 14CO2 bound to the activator site was trapped in the presence of carboxypentitol bisphosphates. Deleting orthophosphate from the incubation medium eliminated inorganic carbon accumulation in the stroma. Thus, bicarbonate ion distribution across the chloroplast envelope was not strictly pH dependent as predicted by the Henderson-Hasselbach formula. This finding is potentially explained by the presence of bound CO2 in the chloroplast.

Full text

PDF
962

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Badger M. R., Kaplan A., Berry J. A. Internal Inorganic Carbon Pool of Chlamydomonas reinhardtii: EVIDENCE FOR A CARBON DIOXIDE-CONCENTRATING MECHANISM. Plant Physiol. 1980 Sep;66(3):407–413. doi: 10.1104/pp.66.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Badger M. R., Lorimer G. H. Interaction of sugar phosphates with the catalytic site of ribulose-1,5-bisphosphate carboxylase. Biochemistry. 1981 Apr 14;20(8):2219–2225. doi: 10.1021/bi00511a023. [DOI] [PubMed] [Google Scholar]
  4. Hall N. P., Pierce J., Tolbert N. E. Formation of a carboxyarabinitol bisphosphate complex with ribulose bisphosphate carboxylase/oxygenase and theoretical specific activity of the enzyme. Arch Biochem Biophys. 1981 Nov;212(1):115–119. doi: 10.1016/0003-9861(81)90349-0. [DOI] [PubMed] [Google Scholar]
  5. Heber U., Santarius K. A. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch B. 1970 Jul;25(7):718–728. doi: 10.1515/znb-1970-0714. [DOI] [PubMed] [Google Scholar]
  6. Heldt H. W., Sauer F. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta. 1971 Apr 6;234(1):83–91. doi: 10.1016/0005-2728(71)90133-2. [DOI] [PubMed] [Google Scholar]
  7. Heldt W. H., Werdan K., Milovancev M., Geller G. Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta. 1973 Aug 31;314(2):224–241. doi: 10.1016/0005-2728(73)90137-0. [DOI] [PubMed] [Google Scholar]
  8. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kow Y. W., Gibbs M. Characterization of a Photosynthesizing Reconstituted Spinach Chloroplast Preparation : REGULATION BY PRIMER, ADENYLATES, FERREDOXIN, AND PYRIDINE NUCLEOTIDES. Plant Physiol. 1982 Jan;69(1):179–186. doi: 10.1104/pp.69.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Perchorowicz J. T., Raynes D. A., Jensen R. G. Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. Proc Natl Acad Sci U S A. 1981 May;78(5):2985–2989. doi: 10.1073/pnas.78.5.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pierce J., Tolbert N. E., Barker R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry. 1980 Mar 4;19(5):934–942. doi: 10.1021/bi00546a018. [DOI] [PubMed] [Google Scholar]
  13. Poincelot R. P. Transport of Metabolites across Isolated Envelope Membranes of Spinach Chloroplasts. Plant Physiol. 1975 May;55(5):849–852. doi: 10.1104/pp.55.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Poincelot R. P. Uptake of bicarbonate ion in darkness by isolated chloroplast envelope membranes and intact chloroplasts of spinach. Plant Physiol. 1974 Oct;54(4):520–526. doi: 10.1104/pp.54.4.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robinson S. P., McNeil P. H., Walker D. A. Ribulose bisphosphate carboxylase--lack of dark inactivation of the enzyme in experiments with protoplasts. FEBS Lett. 1979 Jan 15;97(2):296–300. doi: 10.1016/0014-5793(79)80106-4. [DOI] [PubMed] [Google Scholar]
  16. Shiraiwa Y., Miyachi S. Form of inorganic carbon utilized for photosynthesis across the chloroplast membrane. FEBS Lett. 1978 Nov 15;95(2):207–210. doi: 10.1016/0014-5793(78)80994-6. [DOI] [PubMed] [Google Scholar]
  17. Stemler A. Forms of Dissolved Carbon Dioxide Required for Photosystem II Activity in Chloroplast Membranes. Plant Physiol. 1980 Jun;65(6):1160–1165. doi: 10.1104/pp.65.6.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Volokita M., Kaplan A., Reinhold L. Evidence for Mediated HCO(3) Transport in Isolated Pea Mesophyll Protoplasts. Plant Physiol. 1981 Jun;67(6):1119–1123. doi: 10.1104/pp.67.6.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Werdan K., Heldt H. W. Accumulation of bicarbonate in intact chloroplasts following a pH gradient. Biochim Biophys Acta. 1972 Dec 14;283(3):430–441. doi: 10.1016/0005-2728(72)90260-5. [DOI] [PubMed] [Google Scholar]
  20. Werdan K., Heldt H. W., Milovancev M. The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta. 1975 Aug 11;396(2):276–292. doi: 10.1016/0005-2728(75)90041-9. [DOI] [PubMed] [Google Scholar]
  21. Yokota A., Komura H., Kitaoka S. Intracellular inorganic carbon exists as protein carbamate in photosynthesizing Euglena gracilis z. Biochem Biophys Res Commun. 1983 Mar 16;111(2):544–550. doi: 10.1016/0006-291x(83)90341-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES