Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Apr;74(4):1030–1034. doi: 10.1104/pp.74.4.1030

Enzymes of Sucrose Breakdown in Soybean Nodules

Alkaline Invertase

Matthew Morell 1,1, Les Copeland 1
PMCID: PMC1066813  PMID: 16663498

Abstract

The specific activities of acid and alkaline invertases (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26), sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyltransferase, EC 2.4.1.13), hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1), and fructokinase (ATP: d-fructose 6-phosphotransferase, EC 2.7.1.4) were determined in soybean (Glycine max L. Merr cv Williams) nodules at different stages of development and, for comparison, in roots of nonnodulated soybeans. Alkaline invertase and sucrose synthase were both involved in sucrose metabolism in the nodules, but there was only a small amount of acid invertase present. The nodules contained more phosphorylating activity with fructose than glucose. Essentially all of the alkaline invertase, sucrose synthase, and fructokinase were in the soluble fraction of nodule extracts whereas hexokinase was in the bacteroid, plant particulate, and soluble fractions.

Soybean nodule alkaline invertase was partially purified and shown to be a β-d-fructofuranosidase which was specific for sucrose. The pH optimum was 7.6 and the Km for sucrose was 10 millimolar. Fructose was a competitive inhibitor. Tris was a noncompetitive inhibitor and the enzyme was very sensitive to inhibition by heavy metals.

Full text

PDF
1030

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVIGAD G. SUCROSE-URIDINE DIPHOSPHATE GLUCOSYLTRANSFERASE FROM JERUSALEM ARTICHOKE TUBERS. J Biol Chem. 1964 Nov;239:3613–3618. [PubMed] [Google Scholar]
  2. Bach M. K., Magee W. E., Burris R. H. Translocation of Photosynthetic Products to Soybean Nodules and Their Role in Nitrogen Fixation. Plant Physiol. 1958 Mar;33(2):118–124. doi: 10.1104/pp.33.2.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown C. M., Dilworth M. J. Ammonia assimilation by rhizobium cultures and bacteroids. J Gen Microbiol. 1975 Jan;86(1):39–48. doi: 10.1099/00221287-86-1-39. [DOI] [PubMed] [Google Scholar]
  4. Burley J. W. Carbohydrate translocation in raspberry & soybean. Plant Physiol. 1961 Nov;36(6):820–824. doi: 10.1104/pp.36.6.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper R. A., Greenshields R. N. The partial purification and some properties of two sucrases of Phaseolus vulgaris. Biochem J. 1964 Aug;92(2):357–364. doi: 10.1042/bj0920357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Copeland L., Harrison D. D., Turner J. F. Fructokinase (Fraction III) of Pea Seeds. Plant Physiol. 1978 Aug;62(2):291–294. doi: 10.1104/pp.62.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans H. J., Koch B., Klucas R. Preparation of nitrogenase from nodules and separation into components. Methods Enzymol. 1972;24:470–476. doi: 10.1016/0076-6879(72)24092-7. [DOI] [PubMed] [Google Scholar]
  8. Hatch M. D., Sacher J. A., Glasziou K. T. Sugar Accumulation Cycle in Sugar Cane. I. Studies on Enzymes of the Cycle. Plant Physiol. 1963 May;38(3):338–343. doi: 10.1104/pp.38.3.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kidby D. K. Activation of a plant invertase by inorganic phosphate. Plant Physiol. 1966 Sep;41(7):1139–1144. doi: 10.1104/pp.41.7.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nishimura M., Beevers H. Subcellular distribution of gluconeogenetic enzymes in germinating castor bean endosperm. Plant Physiol. 1979 Jul;64(1):31–37. doi: 10.1104/pp.64.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Streeter J. G. Carbohydrates in Soybean Nodules: II. DISTRIBUTION OF COMPOUNDS IN SEEDLINGS DURING THE ONSET OF NITROGEN FIXATION. Plant Physiol. 1980 Sep;66(3):471–476. doi: 10.1104/pp.66.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tanner G. J., Copeland L., Turner J. F. Subcellular localization of hexose kinases in pea stems: mitochondrial hexokinase. Plant Physiol. 1983 Jul;72(3):659–663. doi: 10.1104/pp.72.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Turner J. F., Copeland L. Hexokinase II of Pea Seeds. Plant Physiol. 1981 Nov;68(5):1123–1127. doi: 10.1104/pp.68.5.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wong P. P., Evans H. J. Poly-beta-hydroxybutyrate Utilization by Soybean (Glycine max Merr.) Nodules and Assessment of Its Role in Maintenance of Nitrogenase Activity. Plant Physiol. 1971 Jun;47(6):750–755. doi: 10.1104/pp.47.6.750. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES