Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 May;75(1):21–25. doi: 10.1104/pp.75.1.21

Possible Roles of Calcium and Calmodulin in the Biosynthesis and Secretion of α-Amylase in Rice Seed Scutellar Epithelium 1

Toshiaki Mitsui 1, John T Christeller 1,2, Ikuko Hara-Nishimura 1, Takashi Akazawa 1
PMCID: PMC1066827  PMID: 16663573

Abstract

The scutellar epithelial cells of rice (Oryza sativa L. cv Kimmazé) seeds actively secrete α-amylase in an early stage of germination. Employing an in vivo system of freshly dissected scutellar tissues, effect of Ca2+ on the biosynthesis and the secretion of α-amylase have been studied. The maximum biosynthetic rate was saturated at about 0.5 mm external Ca2+ concentrations, whereas the secretion continued to increase to concentrations above 10 mm Ca2+. In the presence of 1 mm Ca2+, 0.01 μm A-23187 significantly increased both the biosynthesis and the secretion of α-amylase.

A cation-specific requirement for Ca2+ was apparent, since both biosynthesis and extracellular secretion of α-amylase were inhibited by 0.1 mm EGTA but were increased above basal rate only with Ca2+ and Sr2+; K+, Mg2+, and Ba2+ being ineffective.

La3+ and ruthenium red (selective inhibitors of [Ca2+ + Mg2+]-ATPase) were found to profoundly inhibit the secretion of α-amylase. A calmodulin antagonist, W-7, also inhibited the secretion of α-amylase at concentrations where the enzyme synthesis was not much affected. Overall data indicate that Ca2+ movement and secretion of α-amylase are tightly linked and it is likely that they are regulated by the cytoplasmic Ca2+ concentration under possible control by calmodulin.

Full text

PDF
21

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akazawa T., Miyata S. Biosynthesis and secretion of alpha-amylase and other hydrolases in germinating cereal seeds. Essays Biochem. 1982;18:40–78. [PubMed] [Google Scholar]
  2. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  3. Chrispeels M. J., Varner J. E. Gibberellic Acid-enhanced synthesis and release of alpha-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol. 1967 Mar;42(3):398–406. doi: 10.1104/pp.42.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feinstein M. B., Hadjian R. A. Effects of the calmodulin antagonist trifluoperazine on stimulus-induced calcium mobilization, aggregation, secretion, and protein phosphorylation in platelets. Mol Pharmacol. 1982 Mar;21(2):422–431. [PubMed] [Google Scholar]
  5. Kanamori M., Naka M., Asano M., Hidaka H. Effects of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips. J Pharmacol Exp Ther. 1981 May;217(2):494–499. [PubMed] [Google Scholar]
  6. Kirchberger M. A., Antonetz T. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J Biol Chem. 1982 May 25;257(10):5685–5691. [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Levin R. M., Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977 Jul;13(4):690–697. [PubMed] [Google Scholar]
  9. Minocherhomjee A., Roufogalis B. D. Selective antagonism of the Ca2+ transport ATPase of the red cell membrane by N-(14-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine). J Biol Chem. 1982 May 25;257(10):5426–5430. [PubMed] [Google Scholar]
  10. Miyata S., Akazawa T. Enzymic mechanism of starch breakdown in germinating rice seeds : 12. Biosynthesis of alpha-amylase in relation to protein glycosylation. Plant Physiol. 1982 Jul;70(1):147–153. doi: 10.1104/pp.70.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miyata S., Akazawa T. alpha-Amylase biosynthesis: evidence for temporal sequence of NH2-terminal peptide cleavage and protein glycosylation. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6566–6568. doi: 10.1073/pnas.79.21.6566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moll B. A., Jones R. L. Alpha-amylase secretion by single barley aleurone layers. Plant Physiol. 1982 Oct;70(4):1149–1155. doi: 10.1104/pp.70.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Okamoto K., Murai T., Eguchi G., Okamoto M., Akazawa T. Enzymic mechanism of starch breakdown in germinating rice seeds : 11. Ultrastructural changes in scutellar epithelium. Plant Physiol. 1982 Sep;70(3):905–911. doi: 10.1104/pp.70.3.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Quist E. E., Roufogalis B. D. Determination of the stoichiometry of the calcium pump in human erythrocytes using lanthanum as a selective inhibitor. FEBS Lett. 1975 Feb 1;50(2):135–139. doi: 10.1016/0014-5793(75)80473-x. [DOI] [PubMed] [Google Scholar]
  15. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  16. Scheele G., Haymovits A. Potassium- and ionophore A23187-induced discharge of secretory protein in guinea pig pancreatic lobules. Role of extracellular calcium. J Biol Chem. 1980 May 25;255(10):4918–4927. [PubMed] [Google Scholar]
  17. Tartakoff A., Vassalli P., Détraz M. Comparative studies of intracellular transport of secretory proteins. J Cell Biol. 1978 Dec;79(3):694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Varner J. E., Mense R. M. Characteristics of the process of enzyme release from secretory plant cells. Plant Physiol. 1972 Feb;49(2):187–189. doi: 10.1104/pp.49.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Waisman D. M., Gimble J. M., Goodman D. B., Rasmussen H. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. I. Regulation of the Ca2+ pump by calmodulin. J Biol Chem. 1981 Jan 10;256(1):409–414. [PubMed] [Google Scholar]
  20. Watson E. L., Vincenzi F. F., Davis P. W. Ca 2+ -activated membrane ATPase: selective inhibition by ruthenium red. Biochim Biophys Acta. 1971 Dec 3;249(2):606–610. doi: 10.1016/0005-2736(71)90140-4. [DOI] [PubMed] [Google Scholar]
  21. Werner S., Machleidt W. Isolation of precursors of cytochrome oxidase from Neurospora crassa: application of subunit-specific antibodies and protein A from Staphylococcus aureus. Eur J Biochem. 1978 Sep 15;90(1):99–105. doi: 10.1111/j.1432-1033.1978.tb12579.x. [DOI] [PubMed] [Google Scholar]
  22. Williamson R. E., Ashley C. C. Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature. 1982 Apr 15;296(5858):647–650. doi: 10.1038/296647a0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES