Abstract
The effects of several rotenoids have been studied on potato (Solanum tuberosum L.) tuber and etiolated mung bean (Phaseolus aureus Roxb.) hypocotyls mitochondria. The selective inhibition of mitochondrial complex I is characterized by several tests: (a) no effect can be observed on exogenous NADH or succinate oxidation; (b) malate oxidation is inhibited at pH 7.5; (c) one-third decrease of ADP/O ratio appears during malate oxidation at pH 6.5 or during α-ketoglutarate, citrate, or pyruvate oxidation at a pH about 7; (d) during malate oxidation at pH 6.5, a transient inhibition appears which can be maintained by addition of exogenous oxaloacetate; (e) in potato mitochondria, the inhibition of malate oxidation disappears at pH 6.5 when NAD+ is added. Then, a one-third decrease of the ADP/O ratio can be measured.
Such a selective inhibition of complex I is obtained with deguelin, tephrosin, elliptone, OH-12 rotenone, and almost all the rotenoids extracted from Derris roots. The presence of the rings A, B, C, D, E seems to be necessary for the selective inhibition. Opening of the E ring and hydroxylation of the 9 position (rot-2′-enoic acid) give a rotenoid derivative with multisite inhibitory activities on flavoproteins, which are quite comparable to those of common flavonoids such as kaempferol (Ravanel et al. 1982 Plant Physiol 69: 375-378).
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. M., McCarty R. E., Zimmer E. A. The role of galactolipids in spinach chloroplast lamellar membranes: I. Partial purification of a bean leaf galactolipid lipase and its action on subchloroplast particles. Plant Physiol. 1974 May;53(5):699–704. doi: 10.1104/pp.53.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boffey S. A., Selldén G., Leech R. M. Influence of Cell Age on Chlorophyll Formation in Light-grown and Etiolated Wheat Seedlings. Plant Physiol. 1980 Apr;65(4):680–684. doi: 10.1104/pp.65.4.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman E. J., Ikuma H. Regulation of Malate Oxidation in Isolated Mung Bean Mitochondria: II. Role of Adenylates. Plant Physiol. 1976 Sep;58(3):438–446. doi: 10.1104/pp.58.3.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brunton C. J., Palmer J. M. Pathways for the oxidation of malate and reduced pyridine nucleotide by wheat mitochondria. Eur J Biochem. 1973 Nov 1;39(1):283–291. doi: 10.1111/j.1432-1033.1973.tb03125.x. [DOI] [PubMed] [Google Scholar]
- Chance B., Ernster L., Garland P. B., Lee C. P., Light P. A., Ohnishi T., Ragan C. I., Wong D. Flavoproteins of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A. 1967 May;57(5):1498–1505. doi: 10.1073/pnas.57.5.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cran D. G., Possingham J. V. The effect of cell age on chloroplast structure and chlorophyll in cultured spinach leaf discs. Protoplasma. 1974;79(1):197–213. doi: 10.1007/BF02055789. [DOI] [PubMed] [Google Scholar]
- Dean C., Leech R. M. Genome Expression during Normal Leaf Development : I. CELLULAR AND CHLOROPLAST NUMBERS AND DNA, RNA, AND PROTEIN LEVELS IN TISSUES OF DIFFERENT AGES WITHIN A SEVEN-DAY-OLD WHEAT LEAF. Plant Physiol. 1982 Apr;69(4):904–910. doi: 10.1104/pp.69.4.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douce R., Christensen E. L., Bonner W. D., Jr Preparation of intaintact plant mitochondria. Biochim Biophys Acta. 1972 Aug 17;275(2):148–160. doi: 10.1016/0005-2728(72)90035-7. [DOI] [PubMed] [Google Scholar]
- Ikuma H., Bonner W. D. Properties of Higher Plant Mitochondria. III. Effects of Respiratory Inhibitors. Plant Physiol. 1967 Nov;42(11):1535–1544. doi: 10.1104/pp.42.11.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson-Flanagan A. M., Spencer M. S. The effect of rotenone on respiration in pea cotyledon mitochondria. Plant Physiol. 1981 Dec;68(6):1211–1217. doi: 10.1104/pp.68.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jung D. W., Brierley G. P. Swelling and contraction of potato mitochondria. Plant Physiol. 1979 Dec;64(6):948–953. doi: 10.1104/pp.64.6.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin W., Wittenbach V. A. Subcellular localization of proteases in wheat and corn mesophyll protoplasts. Plant Physiol. 1981 May;67(5):969–972. doi: 10.1104/pp.67.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macrae A. R., Moorhouse R. The oxidation of malate by mitochondria isolated from cauliflower buds. Eur J Biochem. 1970 Sep;16(1):96–102. doi: 10.1111/j.1432-1033.1970.tb01058.x. [DOI] [PubMed] [Google Scholar]
- Menichini F., Delle Monache F., Marini Bettolo G. B. Flavonoids and rotenoids from Tephrosieae and related tribes of leguminosae. Planta Med. 1982 Aug;45(4):243–244. doi: 10.1055/s-2007-971382. [DOI] [PubMed] [Google Scholar]
- Neuburger M., Douce R. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Biochim Biophys Acta. 1980 Feb 8;589(2):176–189. doi: 10.1016/0005-2728(80)90036-5. [DOI] [PubMed] [Google Scholar]
- Neuburger M., Douce R. Slow passive diffusion of NAD+ between intact isolated plant mitochondria and suspending medium. Biochem J. 1983 Nov 15;216(2):443–450. doi: 10.1042/bj2160443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravanel P., Tissut M., Douce R. Effects of kaempferol on the oxidative properties of intact plant mitochondria. Plant Physiol. 1982 Feb;69(2):375–378. doi: 10.1104/pp.69.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobin A., Djerdjour B., Journet E., Neuburger M., Douce R. Effect of NAD on Malate Oxidation in Intact Plant Mitochondria. Plant Physiol. 1980 Aug;66(2):225–229. doi: 10.1104/pp.66.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waters S. P., Noble E. R., Dalling M. J. Intracellular Localization of Peptide Hydrolases in Wheat (Triticum aestivum L.) Leaves. Plant Physiol. 1982 Mar;69(3):575–579. doi: 10.1104/pp.69.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson R. H., Hanson J. B. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria. Plant Physiol. 1969 Sep;44(9):1335–1341. doi: 10.1104/pp.44.9.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiskich J. T., Day D. A. Malate oxidation, rotenone-resistance, and alternative path activity in plant mitochondria. Plant Physiol. 1982 Oct;70(4):959–964. doi: 10.1104/pp.70.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittenbach V. A., Lin W., Hebert R. R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol. 1982 Jan;69(1):98–102. doi: 10.1104/pp.69.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
