Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Jun;75(2):414–420. doi: 10.1104/pp.75.2.414

Effects of Rotenoids on Isolated Plant Mitochondria

Patrick Ravanel 1,2, Michel Tissut 1,2, Roland Douce 1,2
PMCID: PMC1066922  PMID: 16663636

Abstract

The effects of several rotenoids have been studied on potato (Solanum tuberosum L.) tuber and etiolated mung bean (Phaseolus aureus Roxb.) hypocotyls mitochondria. The selective inhibition of mitochondrial complex I is characterized by several tests: (a) no effect can be observed on exogenous NADH or succinate oxidation; (b) malate oxidation is inhibited at pH 7.5; (c) one-third decrease of ADP/O ratio appears during malate oxidation at pH 6.5 or during α-ketoglutarate, citrate, or pyruvate oxidation at a pH about 7; (d) during malate oxidation at pH 6.5, a transient inhibition appears which can be maintained by addition of exogenous oxaloacetate; (e) in potato mitochondria, the inhibition of malate oxidation disappears at pH 6.5 when NAD+ is added. Then, a one-third decrease of the ADP/O ratio can be measured.

Such a selective inhibition of complex I is obtained with deguelin, tephrosin, elliptone, OH-12 rotenone, and almost all the rotenoids extracted from Derris roots. The presence of the rings A, B, C, D, E seems to be necessary for the selective inhibition. Opening of the E ring and hydroxylation of the 9 position (rot-2′-enoic acid) give a rotenoid derivative with multisite inhibitory activities on flavoproteins, which are quite comparable to those of common flavonoids such as kaempferol (Ravanel et al. 1982 Plant Physiol 69: 375-378).

Full text

PDF
414

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. M., McCarty R. E., Zimmer E. A. The role of galactolipids in spinach chloroplast lamellar membranes: I. Partial purification of a bean leaf galactolipid lipase and its action on subchloroplast particles. Plant Physiol. 1974 May;53(5):699–704. doi: 10.1104/pp.53.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boffey S. A., Selldén G., Leech R. M. Influence of Cell Age on Chlorophyll Formation in Light-grown and Etiolated Wheat Seedlings. Plant Physiol. 1980 Apr;65(4):680–684. doi: 10.1104/pp.65.4.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowman E. J., Ikuma H. Regulation of Malate Oxidation in Isolated Mung Bean Mitochondria: II. Role of Adenylates. Plant Physiol. 1976 Sep;58(3):438–446. doi: 10.1104/pp.58.3.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Brunton C. J., Palmer J. M. Pathways for the oxidation of malate and reduced pyridine nucleotide by wheat mitochondria. Eur J Biochem. 1973 Nov 1;39(1):283–291. doi: 10.1111/j.1432-1033.1973.tb03125.x. [DOI] [PubMed] [Google Scholar]
  8. Chance B., Ernster L., Garland P. B., Lee C. P., Light P. A., Ohnishi T., Ragan C. I., Wong D. Flavoproteins of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A. 1967 May;57(5):1498–1505. doi: 10.1073/pnas.57.5.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cran D. G., Possingham J. V. The effect of cell age on chloroplast structure and chlorophyll in cultured spinach leaf discs. Protoplasma. 1974;79(1):197–213. doi: 10.1007/BF02055789. [DOI] [PubMed] [Google Scholar]
  10. Dean C., Leech R. M. Genome Expression during Normal Leaf Development : I. CELLULAR AND CHLOROPLAST NUMBERS AND DNA, RNA, AND PROTEIN LEVELS IN TISSUES OF DIFFERENT AGES WITHIN A SEVEN-DAY-OLD WHEAT LEAF. Plant Physiol. 1982 Apr;69(4):904–910. doi: 10.1104/pp.69.4.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Douce R., Christensen E. L., Bonner W. D., Jr Preparation of intaintact plant mitochondria. Biochim Biophys Acta. 1972 Aug 17;275(2):148–160. doi: 10.1016/0005-2728(72)90035-7. [DOI] [PubMed] [Google Scholar]
  12. Ikuma H., Bonner W. D. Properties of Higher Plant Mitochondria. III. Effects of Respiratory Inhibitors. Plant Physiol. 1967 Nov;42(11):1535–1544. doi: 10.1104/pp.42.11.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson-Flanagan A. M., Spencer M. S. The effect of rotenone on respiration in pea cotyledon mitochondria. Plant Physiol. 1981 Dec;68(6):1211–1217. doi: 10.1104/pp.68.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jung D. W., Brierley G. P. Swelling and contraction of potato mitochondria. Plant Physiol. 1979 Dec;64(6):948–953. doi: 10.1104/pp.64.6.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lin W., Wittenbach V. A. Subcellular localization of proteases in wheat and corn mesophyll protoplasts. Plant Physiol. 1981 May;67(5):969–972. doi: 10.1104/pp.67.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Macrae A. R., Moorhouse R. The oxidation of malate by mitochondria isolated from cauliflower buds. Eur J Biochem. 1970 Sep;16(1):96–102. doi: 10.1111/j.1432-1033.1970.tb01058.x. [DOI] [PubMed] [Google Scholar]
  17. Menichini F., Delle Monache F., Marini Bettolo G. B. Flavonoids and rotenoids from Tephrosieae and related tribes of leguminosae. Planta Med. 1982 Aug;45(4):243–244. doi: 10.1055/s-2007-971382. [DOI] [PubMed] [Google Scholar]
  18. Neuburger M., Douce R. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Biochim Biophys Acta. 1980 Feb 8;589(2):176–189. doi: 10.1016/0005-2728(80)90036-5. [DOI] [PubMed] [Google Scholar]
  19. Neuburger M., Douce R. Slow passive diffusion of NAD+ between intact isolated plant mitochondria and suspending medium. Biochem J. 1983 Nov 15;216(2):443–450. doi: 10.1042/bj2160443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ravanel P., Tissut M., Douce R. Effects of kaempferol on the oxidative properties of intact plant mitochondria. Plant Physiol. 1982 Feb;69(2):375–378. doi: 10.1104/pp.69.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tobin A., Djerdjour B., Journet E., Neuburger M., Douce R. Effect of NAD on Malate Oxidation in Intact Plant Mitochondria. Plant Physiol. 1980 Aug;66(2):225–229. doi: 10.1104/pp.66.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Waters S. P., Noble E. R., Dalling M. J. Intracellular Localization of Peptide Hydrolases in Wheat (Triticum aestivum L.) Leaves. Plant Physiol. 1982 Mar;69(3):575–579. doi: 10.1104/pp.69.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilson R. H., Hanson J. B. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria. Plant Physiol. 1969 Sep;44(9):1335–1341. doi: 10.1104/pp.44.9.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wiskich J. T., Day D. A. Malate oxidation, rotenone-resistance, and alternative path activity in plant mitochondria. Plant Physiol. 1982 Oct;70(4):959–964. doi: 10.1104/pp.70.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wittenbach V. A., Lin W., Hebert R. R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol. 1982 Jan;69(1):98–102. doi: 10.1104/pp.69.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES