Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Jun;75(2):421–424. doi: 10.1104/pp.75.2.421

Changes in the Number and Composition of Chloroplasts during Senescence of Mesophyll Cells of Attached and Detached Primary Leaves of Wheat (Triticum aestivum L.) 1

Terese M Wardley 1, Prem L Bhalla 1, Michael J Dalling 1
PMCID: PMC1066923  PMID: 16663637

Abstract

Changes in the number and composition of chloroplasts of mesophyll cells were followed during senescence of the primary leaf of wheat (Triticum aestivum L.). Senescence was due to the natural pattern of leaf ontogeny or was either induced by leaf detachment and incubation in darkness, or incubation of attached leaves in the dark. In each case discrete sections (1 centimeter) of the leaf, representing mesophyll cells of the basal, middle, and tip regions, were examined. For all treatments, senescence was characterized by a loss of chlorophyll and the protein ribulose 1,5-bisphosphate carboxylase (RuBPCase). Chloroplast number per mesophyll cell remained essentially constant during senescence. It was not until more than 80% of the plastid chlorophyll and RuBPCase was degraded that some reduction (22%) in chloroplast number per mesophyll cell was recorded and this was invariably in the mesophyll cells of the leaf tip. We conclude that these data are consistent with the idea that degradation occurs within the chloroplast and that all chloroplasts in a mesophyll cell senesce with a high degree of synchrony rather than each chloroplast senescing sequentially.

Full text

PDF
421

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. M., McCarty R. E., Zimmer E. A. The role of galactolipids in spinach chloroplast lamellar membranes: I. Partial purification of a bean leaf galactolipid lipase and its action on subchloroplast particles. Plant Physiol. 1974 May;53(5):699–704. doi: 10.1104/pp.53.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boffey S. A., Selldén G., Leech R. M. Influence of Cell Age on Chlorophyll Formation in Light-grown and Etiolated Wheat Seedlings. Plant Physiol. 1980 Apr;65(4):680–684. doi: 10.1104/pp.65.4.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Cran D. G., Possingham J. V. The effect of cell age on chloroplast structure and chlorophyll in cultured spinach leaf discs. Protoplasma. 1974;79(1):197–213. doi: 10.1007/BF02055789. [DOI] [PubMed] [Google Scholar]
  7. Dean C., Leech R. M. Genome Expression during Normal Leaf Development : I. CELLULAR AND CHLOROPLAST NUMBERS AND DNA, RNA, AND PROTEIN LEVELS IN TISSUES OF DIFFERENT AGES WITHIN A SEVEN-DAY-OLD WHEAT LEAF. Plant Physiol. 1982 Apr;69(4):904–910. doi: 10.1104/pp.69.4.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lin W., Wittenbach V. A. Subcellular localization of proteases in wheat and corn mesophyll protoplasts. Plant Physiol. 1981 May;67(5):969–972. doi: 10.1104/pp.67.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Waters S. P., Noble E. R., Dalling M. J. Intracellular Localization of Peptide Hydrolases in Wheat (Triticum aestivum L.) Leaves. Plant Physiol. 1982 Mar;69(3):575–579. doi: 10.1104/pp.69.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wittenbach V. A., Lin W., Hebert R. R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol. 1982 Jan;69(1):98–102. doi: 10.1104/pp.69.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES