Abstract
The results of studies of SO42− uptake by Lemna paucicostata are most simply interpreted by the hypothesis that at least two components are involved, one saturating and one linear, `nonsaturating.' The saturating component has a low Km and high specificity for SO42−. Uptake by the nonsaturating component is less affected by pH and temperature than is that of the saturating system. SO42− efflux is not quantitatively important in Lemna under standard conditions (20 micromolar SO42−) (Datko AH, SH Mudd 1980 Plant Physiol 65: 906-912). 55% of newly taken up 35SO42− enters a slowly turning over compartment (vacuole?); 45% remains in a compartment (cytoplasm?) in which it is rapidly metabolized to organic compounds.
Growth in increased concentrations of SO42− or cystine, but not methionine, down-regulates the saturating, but not the nonsaturating, system. Growth in limiting SO42− up-regulates the saturating system. Overall, a 500-fold change was observed. Reciprocal inhibition experiments demonstrated that molybdate and SO42− are taken up by a common mechanism, but growth in molybdate failed to up-regulate SO42− uptake. Regulation by growth in SO42− or cystine did not markedly affect uptake of phosphate or of several organic compounds.
The saturating system contributes 99% of SO42− uptake under standard conditions, providing sufficient SO42− so it is not limiting. In nature the same system likely contributes at least 65 to 70%.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brunold C. Regulation of Sulfate Assimilation in Plants: 7. Cysteine Inactivation of Adenosine 5'-Phosphosulfate Sulfotransferase in Lemna minor L. Plant Physiol. 1978 Mar;61(3):342–347. doi: 10.1104/pp.61.3.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cram J. Characteristics of sulfate transport across plasmalemma and tonoplast of carrot root cells. Plant Physiol. 1983 May;72(1):204–211. doi: 10.1104/pp.72.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H., Giovanelli J. Lemna paucicostata Hegelm. 6746: DEVELOPMENT OF STANDARDIZED GROWTH CONDITIONS SUITABLE FOR BIOCHEMICAL EXPERIMENTATION. Plant Physiol. 1980 May;65(5):906–912. doi: 10.1104/pp.65.5.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H., Giovanelli J. Lemna paucicostata Hegelm. 6746: LIFE CYCLE AND CHARACTERIZATION OF THE COLONY TYPES IN A POPULATION. Plant Physiol. 1980 May;65(5):913–923. doi: 10.1104/pp.65.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H. Methionine biosynthesis in lemna: inhibitor studies. Plant Physiol. 1982 May;69(5):1070–1076. doi: 10.1104/pp.69.5.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H. Responses of Sulfur-Containing Compounds in Lemna paucicostata Hegelm. 6746 to Changes in Availability of Sulfur Sources. Plant Physiol. 1984 Jun;75(2):474–479. doi: 10.1104/pp.75.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deane-Drummond C. E., Glass A. D. Nitrate Uptake into Barley (Hordeum vulgare) Plants : A New Approach Using ClO(3) as an Analog for NO(3). Plant Physiol. 1982 Jul;70(1):50–54. doi: 10.1104/pp.70.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furner I. J., Sung Z. R. Regulation of sulfate uptake in carrot cells: Properties of a hypercontrolled variant. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1149–1153. doi: 10.1073/pnas.79.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovanelli J., Mudd S. H., Datko A. H. Homocysteine biosynthesis in green plants. Physiological importance of the transsulfuration pathway in Chlorella sorokiniana growing under steady state conditions with limiting sulfate. J Biol Chem. 1978 Aug 25;253(16):5665–5677. [PubMed] [Google Scholar]
- Hart J. W., Filner P. Regulation of sulfate uptake by amino acids in cultured tobacco cells. Plant Physiol. 1969 Sep;44(9):1253–1259. doi: 10.1104/pp.44.9.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeanjean R., Broda E. Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate stravation. Arch Microbiol. 1977 Jul 26;114(1):19–23. doi: 10.1007/BF00429625. [DOI] [PubMed] [Google Scholar]
- Leggett J. E., Epstein E. Kinetics of Sulfate Absorption by Barley Roots. Plant Physiol. 1956 May;31(3):222–226. doi: 10.1104/pp.31.3.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macnicol P. K., Datko A. H., Giovanelli J., Mudd S. H. Homocysteine Biosynthesis in Green Plants: Physiological Importance of the Transsulfuration Pathway in Lemna paucicostata. Plant Physiol. 1981 Sep;68(3):619–625. doi: 10.1104/pp.68.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith I. K. Characterization of sulfate transport in cultured tobacco cells. Plant Physiol. 1976 Sep;58(3):358–362. doi: 10.1104/pp.58.3.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith I. K. Regulation of Sulfate Assimilation in Tobacco Cells: EFFECT OF NITROGEN AND SULFUR NUTRITION ON SULFATE PERMEASE AND O-ACETYLSERINE SULFHYDRYLASE. Plant Physiol. 1980 Nov;66(5):877–883. doi: 10.1104/pp.66.5.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoiron A., Thoiron B., Demarty M., Thellier M. Compartmental analysis of sulphate transport in Lemna minor L., taking plant growth and sulphate metabolization into consideration. Biochim Biophys Acta. 1981 Jun 9;644(1):24–35. doi: 10.1016/0005-2736(81)90054-7. [DOI] [PubMed] [Google Scholar]
- Thompson G. A., Datko A. H., Mudd S. H. Adaptation of Lemna paucicostata to Sublethal Methionine Deprivation. Plant Physiol. 1983 Feb;71(2):241–247. doi: 10.1104/pp.71.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallée M., Jeanjean R. Le système de transport de SO4= chez Chlorella pyrenoidosa et sa régulation. I. Etude cinétique de la perméation. Biochim Biophys Acta. 1968 Jun 11;150(4):599–606. doi: 10.1016/0005-2736(68)90049-7. [DOI] [PubMed] [Google Scholar]