Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Jun;75(2):466–473. doi: 10.1104/pp.75.2.466

Sulfate Uptake and Its Regulation in Lemna paucicostata Hegelm. 6746

Anne H Datko 1,1, S Harvey Mudd 1
PMCID: PMC1066931  PMID: 16663645

Abstract

The results of studies of SO42− uptake by Lemna paucicostata are most simply interpreted by the hypothesis that at least two components are involved, one saturating and one linear, `nonsaturating.' The saturating component has a low Km and high specificity for SO42−. Uptake by the nonsaturating component is less affected by pH and temperature than is that of the saturating system. SO42− efflux is not quantitatively important in Lemna under standard conditions (20 micromolar SO42−) (Datko AH, SH Mudd 1980 Plant Physiol 65: 906-912). 55% of newly taken up 35SO42− enters a slowly turning over compartment (vacuole?); 45% remains in a compartment (cytoplasm?) in which it is rapidly metabolized to organic compounds.

Growth in increased concentrations of SO42− or cystine, but not methionine, down-regulates the saturating, but not the nonsaturating, system. Growth in limiting SO42− up-regulates the saturating system. Overall, a 500-fold change was observed. Reciprocal inhibition experiments demonstrated that molybdate and SO42− are taken up by a common mechanism, but growth in molybdate failed to up-regulate SO42− uptake. Regulation by growth in SO42− or cystine did not markedly affect uptake of phosphate or of several organic compounds.

The saturating system contributes 99% of SO42− uptake under standard conditions, providing sufficient SO42− so it is not limiting. In nature the same system likely contributes at least 65 to 70%.

Full text

PDF
466

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunold C. Regulation of Sulfate Assimilation in Plants: 7. Cysteine Inactivation of Adenosine 5'-Phosphosulfate Sulfotransferase in Lemna minor L. Plant Physiol. 1978 Mar;61(3):342–347. doi: 10.1104/pp.61.3.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cram J. Characteristics of sulfate transport across plasmalemma and tonoplast of carrot root cells. Plant Physiol. 1983 May;72(1):204–211. doi: 10.1104/pp.72.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Datko A. H., Mudd S. H., Giovanelli J. Lemna paucicostata Hegelm. 6746: DEVELOPMENT OF STANDARDIZED GROWTH CONDITIONS SUITABLE FOR BIOCHEMICAL EXPERIMENTATION. Plant Physiol. 1980 May;65(5):906–912. doi: 10.1104/pp.65.5.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Datko A. H., Mudd S. H., Giovanelli J. Lemna paucicostata Hegelm. 6746: LIFE CYCLE AND CHARACTERIZATION OF THE COLONY TYPES IN A POPULATION. Plant Physiol. 1980 May;65(5):913–923. doi: 10.1104/pp.65.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Datko A. H., Mudd S. H. Methionine biosynthesis in lemna: inhibitor studies. Plant Physiol. 1982 May;69(5):1070–1076. doi: 10.1104/pp.69.5.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Datko A. H., Mudd S. H. Responses of Sulfur-Containing Compounds in Lemna paucicostata Hegelm. 6746 to Changes in Availability of Sulfur Sources. Plant Physiol. 1984 Jun;75(2):474–479. doi: 10.1104/pp.75.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deane-Drummond C. E., Glass A. D. Nitrate Uptake into Barley (Hordeum vulgare) Plants : A New Approach Using ClO(3) as an Analog for NO(3). Plant Physiol. 1982 Jul;70(1):50–54. doi: 10.1104/pp.70.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furner I. J., Sung Z. R. Regulation of sulfate uptake in carrot cells: Properties of a hypercontrolled variant. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1149–1153. doi: 10.1073/pnas.79.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giovanelli J., Mudd S. H., Datko A. H. Homocysteine biosynthesis in green plants. Physiological importance of the transsulfuration pathway in Chlorella sorokiniana growing under steady state conditions with limiting sulfate. J Biol Chem. 1978 Aug 25;253(16):5665–5677. [PubMed] [Google Scholar]
  10. Hart J. W., Filner P. Regulation of sulfate uptake by amino acids in cultured tobacco cells. Plant Physiol. 1969 Sep;44(9):1253–1259. doi: 10.1104/pp.44.9.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jeanjean R., Broda E. Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate stravation. Arch Microbiol. 1977 Jul 26;114(1):19–23. doi: 10.1007/BF00429625. [DOI] [PubMed] [Google Scholar]
  12. Leggett J. E., Epstein E. Kinetics of Sulfate Absorption by Barley Roots. Plant Physiol. 1956 May;31(3):222–226. doi: 10.1104/pp.31.3.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Macnicol P. K., Datko A. H., Giovanelli J., Mudd S. H. Homocysteine Biosynthesis in Green Plants: Physiological Importance of the Transsulfuration Pathway in Lemna paucicostata. Plant Physiol. 1981 Sep;68(3):619–625. doi: 10.1104/pp.68.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith I. K. Characterization of sulfate transport in cultured tobacco cells. Plant Physiol. 1976 Sep;58(3):358–362. doi: 10.1104/pp.58.3.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith I. K. Regulation of Sulfate Assimilation in Tobacco Cells: EFFECT OF NITROGEN AND SULFUR NUTRITION ON SULFATE PERMEASE AND O-ACETYLSERINE SULFHYDRYLASE. Plant Physiol. 1980 Nov;66(5):877–883. doi: 10.1104/pp.66.5.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thoiron A., Thoiron B., Demarty M., Thellier M. Compartmental analysis of sulphate transport in Lemna minor L., taking plant growth and sulphate metabolization into consideration. Biochim Biophys Acta. 1981 Jun 9;644(1):24–35. doi: 10.1016/0005-2736(81)90054-7. [DOI] [PubMed] [Google Scholar]
  17. Thompson G. A., Datko A. H., Mudd S. H. Adaptation of Lemna paucicostata to Sublethal Methionine Deprivation. Plant Physiol. 1983 Feb;71(2):241–247. doi: 10.1104/pp.71.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vallée M., Jeanjean R. Le système de transport de SO4= chez Chlorella pyrenoidosa et sa régulation. I. Etude cinétique de la perméation. Biochim Biophys Acta. 1968 Jun 11;150(4):599–606. doi: 10.1016/0005-2736(68)90049-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES