Abstract
In vitro fatty acid transfer to form complex lipids was observed in crude cell extracts of Anabaena variabilis using [1-14C]palmitoyl-acyl carrier protein, [1-14C]stearoyl-acyl carrier protein, and [1-14C]oleoyl-acyl carrier protein substrates. The data indicated that there was a rapid transfer of the fatty acids into the complex lipids. The greatest amount of radioactivity was observed in the monogalactosyl diacylglycerol fractions and there appeared to be a preference for the transfer of stearate over palmitate. The exogenously added lysophospholipids, (lysophosphatidylglycerol, lysophosphatidylcholine) and 2-monopalmitin acted as acceptors in acyl transfer. Addition of the hypolipidemic drug, WY14643, inhibited the fast acyl transfer reaction and showed that the first product of acyl transfer was diglyceride followed by monogalactosyl diacylglycerol. Thioesters of Coenzyme A do not seem to be involved in these reactions.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertrams M., Heinz E. Positional Specificity and Fatty Acid Selectivity of Purified sn-Glycerol 3-Phosphate Acyltransferases from Chloroplasts. Plant Physiol. 1981 Sep;68(3):653–657. doi: 10.1104/pp.68.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Delo J., Ernst-Fonberg M. L., Bloch K. Fatty acid synthetases from Euglena gracilis. Arch Biochem Biophys. 1971 Apr;143(2):384–391. doi: 10.1016/0003-9861(71)90225-6. [DOI] [PubMed] [Google Scholar]
- Ernst-Fonberg M. L., Dubinskas F., Jonak Z. L. Comparison of two fatty acid synthetases from Euglena gracilis variety bacillaris. Arch Biochem Biophys. 1974 Dec;165(2):646–655. doi: 10.1016/0003-9861(74)90293-8. [DOI] [PubMed] [Google Scholar]
- Ernst-Fonberg M. L. Fatty acid synthetase activity in Euglena gracilis variety bacillarius. Characterization of an acyl carrier protein dependent system. Biochemistry. 1973 Jun 19;12(13):2449–2455. doi: 10.1021/bi00737a013. [DOI] [PubMed] [Google Scholar]
- Frentzen M., Heinz E., McKeon T. A., Stumpf P. K. Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem. 1983 Jan 1;129(3):629–636. doi: 10.1111/j.1432-1033.1983.tb07096.x. [DOI] [PubMed] [Google Scholar]
- Hendren R. W., Bloch K. Fatty acid synthetases from Euglena gracilis. Separation of component activities of the ACP-dependent fatty acid synthetase and partial purification of the beta-ketoacyl-ACP synthetase. J Biol Chem. 1980 Feb 25;255(4):1504–1508. [PubMed] [Google Scholar]
- Joyard J., Stumpf P. K. Characterization of an acyl-coenzyme a thioesterase associated with the envelope of spinach chloroplasts. Plant Physiol. 1980 Jun;65(6):1039–1043. doi: 10.1104/pp.65.6.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyard J., Stumpf P. K. Synthesis of Long-Chain Acyl-CoA in Chloroplast Envelope Membranes. Plant Physiol. 1981 Feb;67(2):250–256. doi: 10.1104/pp.67.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan M. U., Williams J. P. Improved thin-layer chromatographic method for the separation of major phospholipids and glycolipids from plant lipid extracts and phosphatidyl glycerol and bis(monoacylglyceryl) phosphate from animal lipid extracts. J Chromatogr. 1977 Oct 11;140(2):179–185. doi: 10.1016/s0021-9673(00)88412-5. [DOI] [PubMed] [Google Scholar]
- Lem N. W., Stumpf P. K. In Vitro Fatty Acid Synthesis and Complex Lipid Metabolism in the Cyanobacterium Anabaena variabilis: I. Some Characteristics of Fatty Acid Synthesis. Plant Physiol. 1984 Jan;74(1):134–138. doi: 10.1104/pp.74.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mancha M., Stokes G. B., Stumpf P. K. Fat metabolism in higher plants. The determination of acyl-acyl carrier protein and acyl coenzyme A in a complex lipid mixture 1,2. Anal Biochem. 1975 Oct;68(2):600–608. doi: 10.1016/0003-2697(75)90655-7. [DOI] [PubMed] [Google Scholar]
- Rock C. O., Garwin J. L. Preparative enzymatic synthesis and hydrophobic chromatography of acyl-acyl carrier protein. J Biol Chem. 1979 Aug 10;254(15):7123–7128. [PubMed] [Google Scholar]
- Shimakata T., Stumpf P. K. Fatty Acid Synthetase of Spinacia oleracea Leaves. Plant Physiol. 1982 Jun;69(6):1257–1262. doi: 10.1104/pp.69.6.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimakata T., Stumpf P. K. Isolation and function of spinach leaf beta-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5808–5812. doi: 10.1073/pnas.79.19.5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimakata T., Stumpf P. K. Purification and characterization of beta-ketoacyl-ACP synthetase I from Spinacia oleracea leaves. Arch Biochem Biophys. 1983 Jan;220(1):39–45. doi: 10.1016/0003-9861(83)90384-3. [DOI] [PubMed] [Google Scholar]
- Shimakata T., Stumpf P. K. The procaryotic nature of the fatty acid synthetase of developing Carthamus tinctorius L. (Safflower) seeds. Arch Biochem Biophys. 1982 Aug;217(1):144–154. doi: 10.1016/0003-9861(82)90488-x. [DOI] [PubMed] [Google Scholar]