Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Jul;75(3):732–739. doi: 10.1104/pp.75.3.732

Novel Phycoerythrins in Marine Synechococcus spp. 1

Characterization and Evolutionary and Ecological Implications

Randall S Alberte 1,2, A Michelle Wood 1,2,2, Thomas A Kursar 1,2,3, Robert R L Guillard 1,2
PMCID: PMC1066985  PMID: 16663696

Abstract

Four clones of the marine, unicellular, cyanobacteria Synechococcus spp., were examined for the spectral and biochemical features of their phycoerythrins (PE) and their photosynthetic characteristics. Two spectral types of PE which are distinct from known PEs were found. One PE type possessed absorption maxima at 500 and 545 nm and a fluorescence emission at 560 nm. Upon denaturation in acid-urea, two chromophore absorption maxima were obtained, one corresponding to phycourobilin (Amax 500 nm) and one at 558 nm, ascribed to a phycoerythrobilin-like chromophore. The ratio of phycoerythrobilin-like to phycourobilin chromophores was 4.9:1.3. This PE possessed two subunits of Mrs of 17.0 and 19.5 kD for the α and β subunits, respectively. The other PE possessed a single symmetrical absorption at 551 nm and a fluorescence emission at 570 nm. This phycobiliprotein showed a single chromophore absorption band (Amax 558 nm) and yielded two polypeptides, an α of 17.5 kD and a β subunit of 20.8 kD. Both PEs showed a (α, β)n structure. The presence of phycoerythrobilin-like chromophores (Amax 558 nm) appears to be diagnostic of this marine cyanobacterial group. The features of these PEs combined with additional biochemical data, suggest a possible evolutionary link between the PE-containing marine Synechococcus group and the red algal chloroplast. When the Synechococcus clones were grown under low light intensity the PE-containing clones showed higher photosynthetic performance, larger photosynthetic units sizes, reaction center I to II ratios near unity, and steeper initial slopes of photosynthesis versus irradiance curves than a non-PE-containing clone. These findings demonstrate the high photosynthetic efficiency of PE-containing clones in low light environments common to middepth neritic and oceanic habitats.

Full text

PDF
732

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. GUILLARD R. R., RYTHER J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962 Apr;8:229–239. doi: 10.1139/m62-029. [DOI] [PubMed] [Google Scholar]
  2. Glazer A. N., Apell G. S., Hixson C. S., Bryant D. A., Rimon S., Brown D. M. Biliproteins of cyanobacteria and Rhodophyta: Homologous family of photosynthetic accessory pigments. Proc Natl Acad Sci U S A. 1976 Feb;73(2):428–431. doi: 10.1073/pnas.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Glazer A. N. Comparative biochemistry of photosynthetic light-harvesting systems. Annu Rev Biochem. 1983;52:125–157. doi: 10.1146/annurev.bi.52.070183.001013. [DOI] [PubMed] [Google Scholar]
  4. Glazer A. N., Hixson C. S. Subunit structure and chromophore composition of rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem. 1977 Jan 10;252(1):32–42. [PubMed] [Google Scholar]
  5. Kursar T. A., Alberte R. S. Photosynthetic Unit Organization in a Red Alga : Relationships between Light-Harvesting Pigments and Reaction Centers. Plant Physiol. 1983 Jun;72(2):409–414. doi: 10.1104/pp.72.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kursar T. A., Swift H., Alberte R. S. Morphology of a novel cyanobacterium and characterization of light-harvesting complexes from it: Implications for phycobiliprotein evolution. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6888–6892. doi: 10.1073/pnas.78.11.6888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kursar T. A., van der Meer J., Alberte R. S. Light-Harvesting System of the Red Alga Gracilaria tikvahiae: I. Biochemical Analyses of Pigment Mutations. Plant Physiol. 1983 Oct;73(2):353–360. doi: 10.1104/pp.73.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Li W. K., Rao D. V., Harrison W. G., Smith J. C., Cullen J. J., Irwin B., Platt T. Autotrophic picoplankton in the tropical ocean. Science. 1983 Jan 21;219(4582):292–295. doi: 10.1126/science.219.4582.292. [DOI] [PubMed] [Google Scholar]
  10. Muckle G., Rüdiger W. Chromophore content of C-phycoerythrin from various Cyanobacteria. Z Naturforsch C. 1977 Nov-Dec;32(11-12):957–962. doi: 10.1515/znc-1977-11-1214. [DOI] [PubMed] [Google Scholar]
  11. Offner G. D., Brown-Mason A. S., Ehrhardt M. M., Troxler R. F. Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. I. Complete amino acid sequence of the alpha subunit. J Biol Chem. 1981 Dec 10;256(23):12167–12175. [PubMed] [Google Scholar]
  12. Troxler R. F., Ehrhardt M. M., Brown-Mason A. S., Offner G. D. Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. II. Complete amino acid sequence of the beta subunit. J Biol Chem. 1981 Dec 10;256(23):12176–12184. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES