Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Jul;75(3):813–817. doi: 10.1104/pp.75.3.813

Inhibition and Stimulation of Root Respiration in Pisum and Plantago by Hydroxamate 1

Its Consequences for the Assessment of Alternative Path Activity

Ries de Visser 1,2, Tjeerd Blacquière 1
PMCID: PMC1066999  PMID: 16663710

Abstract

The contribution of the alternative pathway in root respiration of Pisum sativum L. cv Rondo, Plantago lanceolata L., and Plantago major L. ssp major was determined by titration with salicylhydroxamate (SHAM) in the absence and presence of cyanide. SHAM completely inhibited the cyanide-resistant component of root respiration at 5 to 10 millimolar with an apparent Ki of 600 micromolar. In contrast, SHAM enhanced pea root respiration by 30% at most, at concentrations below 15 millimolar. An unknown oxidase appeared to be responsible for this stimulation. Its maximum activity in the presence of low SHAM concentrations (1-5 millimolar) was 40% of control respiration rate in pea roots, since 25 millimolar SHAM resulted in 10% inhibition. In plantain roots, the maximum activity was found to be 15%. This hydroxamate-activated oxidase was distinct from the cytochrome path by its resistance to antimycin. The results of titrations with cyanide and antimycin indicated that high SHAM concentrations (up to 25 millimolar) block the hydroxamate-activated oxidase, but do not affect the cytochrome path and, therefore, are a reliable tool for estimating the activity of the alternative path in vivo. A considerable fraction of root respiration was mediated by the alternative path in plantain (45%) and pea (15%), in the latter because of the saturation of the cytochrome path.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviram I. The interaction of benzhydroxamic acid with horseradish peroxidase and its fluorescent analogs. Arch Biochem Biophys. 1981 Dec;212(2):483–490. doi: 10.1016/0003-9861(81)90391-x. [DOI] [PubMed] [Google Scholar]
  2. Azcón-Bieto J., Lambers H., Day D. A. Effect of photosynthesis and carbohydrate status on respiratory rates and the involvement of the alternative pathway in leaf respiration. Plant Physiol. 1983 Jul;72(3):598–603. doi: 10.1104/pp.72.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bahr J. T., Bonner W. D., Jr Cyanide-insensitive respiration. I. The steady states of skunk cabbage spadix and bean hypocotyl mitochondria. J Biol Chem. 1973 May 25;248(10):3441–3445. [PubMed] [Google Scholar]
  4. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnson-Flanagan A. M., Spencer M. S. The effect of rotenone on respiration in pea cotyledon mitochondria. Plant Physiol. 1981 Dec;68(6):1211–1217. doi: 10.1104/pp.68.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rich P. R., Wiegand N. K., Blum H., Moore A. L., Bonner W. D., Jr Studies on the mechanism of inhibition of redox enzymes by substituted hydroxamic acids. Biochim Biophys Acta. 1978 Aug 7;525(2):325–337. doi: 10.1016/0005-2744(78)90227-9. [DOI] [PubMed] [Google Scholar]
  7. Rustin P., Moreau F., Lance C. Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway. Plant Physiol. 1980 Sep;66(3):457–462. doi: 10.1104/pp.66.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schonbaum G. R., Bonner W. D., Jr, Storey B. T., Bahr J. T. Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol. 1971 Jan;47(1):124–128. doi: 10.1104/pp.47.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Theologis A., Laties G. G. Antimycin-insensitive Cytochrome-mediated Respiration in Fresh and Aged Potato Slices. Plant Physiol. 1978 Aug;62(2):238–242. doi: 10.1104/pp.62.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Theologis A., Laties G. G. Relative Contribution of Cytochrome-mediated and Cyanide-resistant Electron Transport in Fresh and Aged Potato Slices. Plant Physiol. 1978 Aug;62(2):232–237. doi: 10.1104/pp.62.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES