Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Aug;75(4):974–978. doi: 10.1104/pp.75.4.974

Proline and Glycine Betaine Influence Protein Solvation 1

Leslie G Paleg 1,2,2, George R Stewart 1,2, Joseph W Bradbeer 1,2
PMCID: PMC1067035  PMID: 16663771

Abstract

Glutamine synthetase from barley (Hordeum distichum L.) is precipitated by polyethylene glycol (PEG). Proline, in a concentration-dependent manner, reduces the amount of enzyme precipitated by PEG, although the effect of the imino acid can be counteracted by raising the level of PEG. The effect of PEG is a function of mer number and concentration and the influence of both elements can be ameliorated by proline. PEG-induced enzyme precipitation is a function of pH, as is its interaction with both proline and betaine in the reaction. The lack of effect of amount of enzyme on the proline and PEG effects supports the conclusion that, in this system, proline and PEG do not function through interaction with the protein. Other compounds, such as glycine, glucose, and sucrose, can decrease the PEG-induced precipitation of the enzyme, although glycerol was not active under the conditions employed.

The results are consistent with the proposition that a protein-containing system in which high concentrations of proline and/or betaine are present, is better `protected' against the biologically unfavorable consequences of dehydration-induced thermodynamic perturbation.

Full text

PDF
974

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
  2. Bowlus R. D., Somero G. N. Solute compatibility with enzyme function and structure: rationales for the selection of osmotic agents and end-products of anaerobic metabolism in marine invertebrates. J Exp Zool. 1979 May;208(2):137–151. doi: 10.1002/jez.1402080202. [DOI] [PubMed] [Google Scholar]
  3. Gekko K., Timasheff S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981 Aug 4;20(16):4667–4676. doi: 10.1021/bi00519a023. [DOI] [PubMed] [Google Scholar]
  4. Gekko K., Timasheff S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 1981 Aug 4;20(16):4677–4686. doi: 10.1021/bi00519a024. [DOI] [PubMed] [Google Scholar]
  5. Greaney G. S., Somero G. N. Effects of anions on the activation thermodynamics and fluorescence emission spectrum of alkaline phosphatase: evidence for enzyme hydration changes during catalysis. Biochemistry. 1979 Nov 27;18(24):5322–5332. doi: 10.1021/bi00591a010. [DOI] [PubMed] [Google Scholar]
  6. Gwynn I., Kemp R. B., Jones B. M., Gröschel-Stewart U. Ultrastructural evidence for myosin of the smooth muscle type at the surface of trypsin-dissociated embryonic chick cells. J Cell Sci. 1974 Jul;15(2):279–289. doi: 10.1242/jcs.15.2.279. [DOI] [PubMed] [Google Scholar]
  7. Ingham K. C. Polyethylene glycol in aqueous solution: solvent perturbation and gel filtration studies. Arch Biochem Biophys. 1977 Nov;184(1):59–68. doi: 10.1016/0003-9861(77)90326-5. [DOI] [PubMed] [Google Scholar]
  8. Ingham K. C. Precipitation of proteins with polyethylene glycol: characterization of albumin. Arch Biochem Biophys. 1978 Feb;186(1):106–113. doi: 10.1016/0003-9861(78)90469-1. [DOI] [PubMed] [Google Scholar]
  9. Lee J. C., Lee L. L. Preferential solvent interactions between proteins and polyethylene glycols. J Biol Chem. 1981 Jan 25;256(2):625–631. [PubMed] [Google Scholar]
  10. Low P. S., Somero G. N. Protein hydration changes during catalysis: a new mechanism of enzymic rate-enhancement and ion activation/inhibition of catalysis. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3305–3309. doi: 10.1073/pnas.72.9.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miekka S. I., Ingham K. C. Influence of hetero-association on the precipitation of proteins by poly(ethylene glycol). Arch Biochem Biophys. 1980 Sep;203(2):630–641. doi: 10.1016/0003-9861(80)90220-9. [DOI] [PubMed] [Google Scholar]
  12. Miekka S. I., Ingham K. C. Influence of self-association of proteins on their precipitation by poly(ethylene glycol). Arch Biochem Biophys. 1978 Dec;191(2):525–536. doi: 10.1016/0003-9861(78)90391-0. [DOI] [PubMed] [Google Scholar]
  13. Na G. C., Timasheff S. N. Interaction of calf brain tubulin with glycerol. J Mol Biol. 1981 Sep 5;151(1):165–178. doi: 10.1016/0022-2836(81)90226-6. [DOI] [PubMed] [Google Scholar]
  14. POLSON A., POTGIETER G. M., LARGIER J. F., MEARS G. E., JOUBERT F. J. THE FRACTIONATION OF PROTEIN MIXTURES BY LINEAR POLYMERS OF HIGH MOLECULAR WEIGHT. Biochim Biophys Acta. 1964 Mar 16;82:463–475. doi: 10.1016/0304-4165(64)90438-6. [DOI] [PubMed] [Google Scholar]
  15. Schobert B. Is there an osmotic regulatory mechanism in algae and higher plants? J Theor Biol. 1977 Sep 7;68(1):17–26. doi: 10.1016/0022-5193(77)90224-7. [DOI] [PubMed] [Google Scholar]
  16. Schobert B., Tschesche H. Unusual solution properties of proline and its interaction with proteins. Biochim Biophys Acta. 1978 Jun 15;541(2):270–277. doi: 10.1016/0304-4165(78)90400-2. [DOI] [PubMed] [Google Scholar]
  17. Singh T. N., Aspinall D., Paleg L. G. Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nat New Biol. 1972 Apr 12;236(67):188–190. doi: 10.1038/newbio236188a0. [DOI] [PubMed] [Google Scholar]
  18. Virella G., Kilpatrick J. M., Chenais F., Fudenberg H. H. Isolation of soluble immune complexes from human serum: combined use of polyethylene glycol precipitation, gel filtration, and affinity chromatography on protein A-Sepharose. Methods Enzymol. 1981;74(Pt 100):644–663. doi: 10.1016/0076-6879(81)74045-x. [DOI] [PubMed] [Google Scholar]
  19. Wickerhauser M. Preparation of antihemophilic factor from indated plasma. Transfusion. 1976 Jul-Aug;16(4):345–350. doi: 10.1046/j.1537-2995.1976.16476247055.x. [DOI] [PubMed] [Google Scholar]
  20. Yancey P. H., Somero G. N. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J. 1979 Nov 1;183(2):317–323. doi: 10.1042/bj1830317. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES