Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Aug;75(4):1001–1008. doi: 10.1104/pp.75.4.1001

Factors Permitting Prolonged Translation by Isolated Pea Chloroplasts 1

Helen T Nivison 1,2, Andre T Jagendorf 1
PMCID: PMC1067041  PMID: 16663723

Abstract

The following parameters were found to prolong the time-course of translation by isolated pea (Pisum sativum, cv Progress No. 9) chloroplasts: addition of other amino acids (an effect synergistic with sufficient free Mg2+), use of lower light intensities, and additions of inorganic phosphate and ATP. In a chloroplast system which includes these parameters, active translation usually extends to almost an hour. The total amount of leucine incorporated is routinely 60 to 100 nanomoles/milligram chlorophyll and often 200 nanomoles/milligram chlorophyll. Accurate estimation of the amount of amino acid incorporated depends on supplying the labeled amino acid at a concentration sufficient to overcome isotope dilution effects from endogenous pools. Approximately 39 thylakoid and 60 stroma polypeptides were visible on autoradiographs after labeling with [35S]methionine. Label in a few of the polypeptide bands was increased or decreased by specific changes in the reaction conditions. Due to the long period of activity and the large number of labeled products, this chloroplast system should be useful for future studies of chloroplast translation.

Full text

PDF
1001

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blair G. E., Ellis R. J. Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta. 1973 Aug 24;319(2):223–234. doi: 10.1016/0005-2787(73)90013-0. [DOI] [PubMed] [Google Scholar]
  2. Bloom M. V., Milos P., Roy H. Light-dependent assembly of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1013–1017. doi: 10.1073/pnas.80.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bottomley W., Spencer D., Whitfeld P. R. Protein synthesis in isolated spinach chloroplasts: comparison of light-driven and ATP-driven synthesis. Arch Biochem Biophys. 1974 Sep;164(1):106–117. doi: 10.1016/0003-9861(74)90012-5. [DOI] [PubMed] [Google Scholar]
  4. Deshaies R. J., Fish L. E., Jagendorf A. T. Permeability of chloroplast envelopes to mg: effects on protein synthesis. Plant Physiol. 1984 Apr;74(4):956–961. doi: 10.1104/pp.74.4.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fish L. E., Jagendorf A. T. High rates of protein synthesis by isolated chloroplasts. Plant Physiol. 1982 Oct;70(4):1107–1114. doi: 10.1104/pp.70.4.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fish L. E., Jagendorf A. T. Light-induced increase in the number and activity of ribosomes bound to pea chloroplast thylakoids in vivo. Plant Physiol. 1982 Apr;69(4):814–824. doi: 10.1104/pp.69.4.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grebanier A. E., Coen D. M., Rich A., Bogorad L. Membrane proteins synthesized but not processed by isolated maize chloroplasts. J Cell Biol. 1978 Sep;78(3):734–746. doi: 10.1083/jcb.78.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hinnebusch A. G., Fink G. R. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5374–5378. doi: 10.1073/pnas.80.17.5374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoffman-Falk H., Mattoo A. K., Marder J. B., Edelman M., Ellis R. J. General occurrence and structural similarity of the rapidly synthesized, 32,000-dalton protein of the chloroplast membrane. J Biol Chem. 1982 Apr 25;257(8):4583–4587. [PubMed] [Google Scholar]
  10. Kirk P. R., Leech R. M. Amino Acid Biosynthesis by Isolated Chloroplasts during Photosynthesis. Plant Physiol. 1972 Aug;50(2):228–234. doi: 10.1104/pp.50.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mills W. R. Photosynthetic formation of the aspartate family of amino acids in isolated chloroplasts. Plant Physiol. 1980 Jun;65(6):1166–1172. doi: 10.1104/pp.65.6.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morgenthaler J. J., Mendiola-Morgenthaler L. Synthesis of soluble, thylakoid, and envelope membrane proteins by spinach chloroplasts purified from gradients. Arch Biochem Biophys. 1976 Jan;172(1):51–58. doi: 10.1016/0003-9861(76)90046-1. [DOI] [PubMed] [Google Scholar]
  13. Mourioux G., Douce R. Slow Passive Diffusion of Orthophosphate between Intact Isolated Chloroplasts and Suspending Medium. Plant Physiol. 1981 Mar;67(3):470–473. doi: 10.1104/pp.67.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wallsgrove R. M., Lea P. J., Miflin B. J. Distribution of the Enzymes of Nitrogen Assimilation within the Pea Leaf Cell. Plant Physiol. 1979 Feb;63(2):232–236. doi: 10.1104/pp.63.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wallsgrove R. M., Lea P. J., Miflin B. J. Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol. 1983 Apr;71(4):780–784. doi: 10.1104/pp.71.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES