Abstract
The effect of exogenous NH4+ on NO3− uptake and in vivo NO3− reductase activity (NRA) in roots of Phaseolus vulgaris L. cv Witte Krombek was studied before, during, and after the apparent induction of root NRA and NO3− uptake. Pretreatment with NH4Cl (0.15-50 millimolar) affected neither the time pattern nor the steady state rate of NO3− uptake.
When NH4+ was given at the start of NO3− nutrition, the time pattern of NO3− uptake was the same as in plants receiving no NH4+. After 6 hours, however, the NO3− uptake rate (NUR) and root NRA were inhibited by NH4+ to a maximum of 45% and 60%, respectively.
The response of the NUR of NO3−-induced plants depended on the NH4Cl concentration. Below 1 millimolar NH4+, the NUR declined immediately and some restoration occurred in the second hour. In the third hour, the NUR became constant. In contrast, NH4+ at 2 millimolar and above caused a rapid and transient stimulation of NO3− uptake, followed again by a decrease in the first, a recovery in the second, and a steady state in the third hour. Maximal inhibition of steady state NUR was 50%. With NO3−-induced plants, root NRA responded less and more slowly to NH4+ than did NUR.
Methionine sulfoximine and azaserine, inhibitors of glutamine synthetase and glutamate synthase, respectively, relieved the NH4+ inhibition of the NUR of NO3−-induced plants. We conclude that repression of the NUR by NH4+ depends on NH4+ assimilation. The repression by NH4+ was least at the lowest and highest NH4+ levels tested (0.04 and 25 millimolar).
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Betlach M. R., Tiedje J. M., Firestone R. B. Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen-13. Arch Microbiol. 1981 Apr;129(2):135–140. doi: 10.1007/BF00455349. [DOI] [PubMed] [Google Scholar]
- Breteler H., Nissen P. Effect of exogenous and endogenous nitrate concentration on nitrate utilization by dwarf bean. Plant Physiol. 1982 Sep;70(3):754–759. doi: 10.1104/pp.70.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deane-Drummond C. E., Glass A. D. Short Term Studies of Nitrate Uptake into Barley Plants Using Ion-Specific Electrodes and ClO(3): II. Regulation of NO(3) Efflux by NH(4). Plant Physiol. 1983 Sep;73(1):105–110. doi: 10.1104/pp.73.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fentem P. A., Lea P. J., Stewart G. R. Ammonia Assimilation in the Roots of Nitrate- and Ammonia-Grown Hordeum Vulgare (cv Golden Promise). Plant Physiol. 1983 Mar;71(3):496–501. doi: 10.1104/pp.71.3.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heimer Y. M., Filner P. Regulation of the nitrate assimilation pathway in cultured tobacco cells. 3. The nitrate uptake system. Biochim Biophys Acta. 1971 Feb 23;230(2):362–372. doi: 10.1016/0304-4165(71)90223-6. [DOI] [PubMed] [Google Scholar]
- Mackown C. T., Jackson W. A., Volk R. J. Restricted nitrate influx and reduction in corn seedlings exposed to ammonium. Plant Physiol. 1982 Feb;69(2):353–359. doi: 10.1104/pp.69.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohmori M., Hattori A. Transient change in the ATP pool of Anabaena cylindrica associated with ammonia assimilation. Arch Microbiol. 1978 Apr 27;117(1):17–20. doi: 10.1007/BF00689345. [DOI] [PubMed] [Google Scholar]
- Rao K. P., Rains D. W. Nitrate absorption by barley: I. Kinetics and energetics. Plant Physiol. 1976 Jan;57(1):55–58. doi: 10.1104/pp.57.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith F. W., Thompson J. F. Regulation of nitrate reductase in excised barley roots. Plant Physiol. 1971 Aug;48(2):219–223. doi: 10.1104/pp.48.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]